Learning to Incentivize Other Learning Agents
- URL: http://arxiv.org/abs/2006.06051v2
- Date: Mon, 19 Oct 2020 21:57:01 GMT
- Title: Learning to Incentivize Other Learning Agents
- Authors: Jiachen Yang, Ang Li, Mehrdad Farajtabar, Peter Sunehag, Edward
Hughes, Hongyuan Zha
- Abstract summary: We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
- Score: 73.03133692589532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenge of developing powerful and general Reinforcement Learning (RL)
agents has received increasing attention in recent years. Much of this effort
has focused on the single-agent setting, in which an agent maximizes a
predefined extrinsic reward function. However, a long-term question inevitably
arises: how will such independent agents cooperate when they are continually
learning and acting in a shared multi-agent environment? Observing that humans
often provide incentives to influence others' behavior, we propose to equip
each RL agent in a multi-agent environment with the ability to give rewards
directly to other agents, using a learned incentive function. Each agent learns
its own incentive function by explicitly accounting for its impact on the
learning of recipients and, through them, the impact on its own extrinsic
objective. We demonstrate in experiments that such agents significantly
outperform standard RL and opponent-shaping agents in challenging general-sum
Markov games, often by finding a near-optimal division of labor. Our work
points toward more opportunities and challenges along the path to ensure the
common good in a multi-agent future.
Related papers
- Inverse Attention Agent for Multi-Agent System [6.196239958087161]
A major challenge for Multi-Agent Systems is enabling agents to adapt dynamically to diverse environments in which opponents and teammates may continually change.
We introduce Inverse Attention Agents that adopt concepts from the Theory of Mind, implemented algorithmically using an attention mechanism and trained in an end-to-end manner.
We demonstrate that the inverse attention network successfully infers the attention of other agents, and that this information improves agent performance.
arXiv Detail & Related papers (2024-10-29T06:59:11Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - ELIGN: Expectation Alignment as a Multi-Agent Intrinsic Reward [29.737986509769808]
We propose a self-supervised intrinsic reward ELIGN - expectation alignment.
Similar to how animals collaborate in a decentralized manner with those in their vicinity, agents trained with expectation alignment learn behaviors that match their neighbors' expectations.
We show that agent coordination improves through expectation alignment because agents learn to divide tasks amongst themselves, break coordination symmetries, and confuse adversaries.
arXiv Detail & Related papers (2022-10-09T22:24:44Z) - Open-Ended Learning Leads to Generally Capable Agents [12.079718607356178]
We define a universe of tasks within an environment domain and demonstrate the ability to train agents that are capable across this vast space and beyond.
The resulting space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning progress of an agent is an open research problem.
We show that through constructing an open-ended learning process, which dynamically changes the training task distributions and training objectives such that the agent never stops learning, we achieve consistent learning of new behaviours.
arXiv Detail & Related papers (2021-07-27T13:30:07Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
We propose a reinforcement learning-based framework for learning latent representations of an agent's policy.
We show that our approach outperforms the alternatives and learns to influence the other agent.
arXiv Detail & Related papers (2020-11-12T19:04:26Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z) - Parallel Knowledge Transfer in Multi-Agent Reinforcement Learning [0.2538209532048867]
This paper proposes a novel knowledge transfer framework in MARL, PAT (Parallel Attentional Transfer)
We design two acting modes in PAT, student mode and self-learning mode.
When agents are unfamiliar with the environment, the shared attention mechanism in student mode effectively selects learning knowledge from other agents to decide agents' actions.
arXiv Detail & Related papers (2020-03-29T17:42:00Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
Multi-agent adversarial inverse reinforcement learning (MA-AIRL) is a recent approach that applies single-agent AIRL to multi-agent problems.
We propose a multi-agent inverse RL algorithm that is more sample-efficient and scalable than previous works.
arXiv Detail & Related papers (2020-02-24T20:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.