Inverse Attention Agent for Multi-Agent System
- URL: http://arxiv.org/abs/2410.21794v1
- Date: Tue, 29 Oct 2024 06:59:11 GMT
- Title: Inverse Attention Agent for Multi-Agent System
- Authors: Qian Long, Ruoyan Li, Minglu Zhao, Tao Gao, Demetri Terzopoulos,
- Abstract summary: A major challenge for Multi-Agent Systems is enabling agents to adapt dynamically to diverse environments in which opponents and teammates may continually change.
We introduce Inverse Attention Agents that adopt concepts from the Theory of Mind, implemented algorithmically using an attention mechanism and trained in an end-to-end manner.
We demonstrate that the inverse attention network successfully infers the attention of other agents, and that this information improves agent performance.
- Score: 6.196239958087161
- License:
- Abstract: A major challenge for Multi-Agent Systems is enabling agents to adapt dynamically to diverse environments in which opponents and teammates may continually change. Agents trained using conventional methods tend to excel only within the confines of their training cohorts; their performance drops significantly when confronting unfamiliar agents. To address this shortcoming, we introduce Inverse Attention Agents that adopt concepts from the Theory of Mind, implemented algorithmically using an attention mechanism and trained in an end-to-end manner. Crucial to determining the final actions of these agents, the weights in their attention model explicitly represent attention to different goals. We furthermore propose an inverse attention network that deduces the ToM of agents based on observations and prior actions. The network infers the attentional states of other agents, thereby refining the attention weights to adjust the agent's final action. We conduct experiments in a continuous environment, tackling demanding tasks encompassing cooperation, competition, and a blend of both. They demonstrate that the inverse attention network successfully infers the attention of other agents, and that this information improves agent performance. Additional human experiments show that, compared to baseline agent models, our inverse attention agents exhibit superior cooperation with humans and better emulate human behaviors.
Related papers
- Contrastive learning-based agent modeling for deep reinforcement
learning [31.293496061727932]
Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems.
We devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution.
CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode.
arXiv Detail & Related papers (2023-12-30T03:44:12Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - Sim-to-Real Causal Transfer: A Metric Learning Approach to
Causally-Aware Interaction Representations [62.48505112245388]
We take an in-depth look at the causal awareness of modern representations of agent interactions.
We show that recent representations are already partially resilient to perturbations of non-causal agents.
We propose a metric learning approach that regularizes latent representations with causal annotations.
arXiv Detail & Related papers (2023-12-07T18:57:03Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Diversifying Agent's Behaviors in Interactive Decision Models [11.125175635860169]
Modelling other agents' behaviors plays an important role in decision models for interactions among multiple agents.
In this article, we investigate into diversifying behaviors of other agents in the subject agent's decision model prior to their interactions.
arXiv Detail & Related papers (2022-03-06T23:05:00Z) - Joint Attention for Multi-Agent Coordination and Social Learning [108.31232213078597]
We show that joint attention can be useful as a mechanism for improving multi-agent coordination and social learning.
Joint attention leads to higher performance than a competitive centralized critic baseline across multiple environments.
Taken together, these findings suggest that joint attention may be a useful inductive bias for multi-agent learning.
arXiv Detail & Related papers (2021-04-15T20:14:19Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
We propose a reinforcement learning-based framework for learning latent representations of an agent's policy.
We show that our approach outperforms the alternatives and learns to influence the other agent.
arXiv Detail & Related papers (2020-11-12T19:04:26Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z) - Variational Autoencoders for Opponent Modeling in Multi-Agent Systems [9.405879323049659]
Multi-agent systems exhibit complex behaviors that emanate from the interactions of multiple agents in a shared environment.
In this work, we are interested in controlling one agent in a multi-agent system and successfully learn to interact with the other agents that have fixed policies.
Modeling the behavior of other agents (opponents) is essential in understanding the interactions of the agents in the system.
arXiv Detail & Related papers (2020-01-29T13:38:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.