論文の概要: Autonomous Driving with Deep Learning: A Survey of State-of-Art
Technologies
- arxiv url: http://arxiv.org/abs/2006.06091v3
- Date: Sat, 4 Jul 2020 04:38:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 05:59:00.535480
- Title: Autonomous Driving with Deep Learning: A Survey of State-of-Art
Technologies
- Title(参考訳): ディープラーニングによる自動運転:最先端技術に関する調査
- Authors: Yu Huang and Yue Chen
- Abstract要約: これはディープラーニング手法を用いた自動運転技術のサーベイである。
本稿では,認識,マッピングとローカライゼーション,予測,計画と制御,シミュレーション,V2X,安全性など,自動運転システムの主要な分野について検討する。
- 参考スコア(独自算出の注目度): 12.775642557933908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007,
autonomous driving has been the most active field of AI applications. Almost at
the same time, deep learning has made breakthrough by several pioneers, three
of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won
ACM Turin Award in 2019. This is a survey of autonomous driving technologies
with deep learning methods. We investigate the major fields of self-driving
systems, such as perception, mapping and localization, prediction, planning and
control, simulation, V2X and safety etc. Due to the limited space, we focus the
analysis on several key areas, i.e. 2D and 3D object detection in perception,
depth estimation from cameras, multiple sensor fusion on the data, feature and
task level respectively, behavior modelling and prediction of vehicle driving
and pedestrian trajectories.
- Abstract(参考訳): 2004/05年のDARPA Grand Challenges、2007年のUrban Challenges以来、自動運転はAIアプリケーションの最も活発な分野となっている。
ほぼ同時に、ディープラーニングはいくつかの先駆者によって突破され、そのうちの3人(ディープラーニングの父とも呼ばれる)、Hinton、Bengio、LeCunは2019年にACM Turin Awardを受賞した。
これはディープラーニング手法を用いた自動運転技術のサーベイである。
本稿では,認識,マッピングとローカライゼーション,予測,計画と制御,シミュレーション,V2X,安全性など,自動運転システムの主要な分野について検討する。
空間が限られているため,知覚における2次元および3次元物体検出,カメラからの深度推定,データへの複数のセンサ融合,特徴量とタスクレベル,行動モデリング,車両走行の予測,歩行者軌道の予測など,いくつかの重要な領域の分析に注目する。
関連論文リスト
- Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Deep Transfer Learning for Intelligent Vehicle Perception: a Survey [42.860260505671036]
本報告は,知的車両認識のための深層移動学習の話題に関する,初めての包括的調査である。
Deep Transfer Learningは、以前別のドメインで学んだ同様のタスクの知識を活用することで、新しいドメインでのタスクパフォーマンスを改善することを目的としている。
論文 参考訳(メタデータ) (2023-06-26T23:18:09Z) - An Overview about Emerging Technologies of Autonomous Driving [12.686694414570457]
2004年にDARPAがグランドチャレンジを始め、2007年にアーバンチャレンジを開始して以来、自動運転はAIアプリケーションの最も活発な分野となっている。
本稿では,自動運転技術とオープンな課題の技術的側面について概観する。
本稿では,認識,マッピングとローカライゼーション,予測,計画と制御,シミュレーション,V2X,安全性など,自動運転システムの主要な分野について検討する。
論文 参考訳(メタデータ) (2023-06-23T05:36:17Z) - SuperDriverAI: Towards Design and Implementation for End-to-End
Learning-based Autonomous Driving [0.0]
我々はSuperDriver AIというエンド・ツー・エンドの学習に基づく自律走行システムを提案する。
Deep Neural Networks (DNN)は、経験豊富な人間ドライバーから運転行動とポリシーを学び、運転操作を決定する。
我々は東京の1つの運転シナリオで150回の走行を収集し、現実世界の車両でSuperDriver AIのデモを見せた。
論文 参考訳(メタデータ) (2023-05-14T10:13:58Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
PPGeo (Policy Pre-training via Geometric Modeling) は,視覚運動運転における政策事前学習のための,直感的かつ直接的な完全自己教師型フレームワークである。
本研究では,大規模な未ラベル・未校正動画の3次元幾何学シーンをモデル化することにより,ポリシー表現を強力な抽象化として学習することを目的とする。
第1段階では、幾何モデリングフレームワークは、2つの連続したフレームを入力として、ポーズと深さの予測を同時に生成する。
第2段階では、視覚エンコーダは、将来のエゴモーションを予測し、現在の視覚観察のみに基づいて測光誤差を最適化することにより、運転方針表現を学習する。
論文 参考訳(メタデータ) (2023-01-03T08:52:49Z) - Emerging Threats in Deep Learning-Based Autonomous Driving: A
Comprehensive Survey [0.9163827313498957]
自動運転の基礎として、ディープラーニング技術は多くの新しいセキュリティリスクに直面している。
学術コミュニティは、敵対的な事例やAIバックドアに対するディープラーニング対策を提案している。
本稿では,自動運転におけるディープラーニングセキュリティ技術の概念,開発,最近の研究について要約する。
論文 参考訳(メタデータ) (2022-10-19T10:04:33Z) - Indy Autonomous Challenge -- Autonomous Race Cars at the Handling Limits [81.22616193933021]
TUM Auton-omous Motorsportsは2021年10月、インディ・オートマチック・チャレンジに参加する。
インディアナポリス・モーター・スピードウェイのダララAV-21レースカー10台のうち1台を走らせることで、自動運転のソフトウェアスタックをベンチマークする。
これは、最も困難で稀な状況をマスターできる自律走行アルゴリズムを開発するための理想的な試験場である。
論文 参考訳(メタデータ) (2022-02-08T11:55:05Z) - KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding
in 2D and 3D [67.50776195828242]
KITTI-360は、よりリッチな入力モダリティ、包括的なセマンティックインスタンスアノテーション、正確なローカライゼーションを含む郊外の運転データセットである。
その結果,150k以上のセマンティクスとインスタンスのアノテート画像と1Bのアノテート3Dポイントが得られた。
我々は、同じデータセット上のコンピュータビジョン、グラフィックス、ロボット工学の問題を含む、モバイル知覚に関連するいくつかのタスクのベンチマークとベースラインを構築した。
論文 参考訳(メタデータ) (2021-09-28T00:41:29Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - 3D Point Cloud Processing and Learning for Autonomous Driving [26.285659927609213]
本稿では,自動運転のための3Dポイントクラウド処理と学習についてレビューする。
LiDARセンサーは、オブジェクトやシーンの外面を正確に記録する3Dポイントの雲を収集する。
論文 参考訳(メタデータ) (2020-03-01T22:13:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。