論文の概要: A Monolingual Approach to Contextualized Word Embeddings for
Mid-Resource Languages
- arxiv url: http://arxiv.org/abs/2006.06202v2
- Date: Thu, 18 Jun 2020 16:28:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 13:39:24.393803
- Title: A Monolingual Approach to Contextualized Word Embeddings for
Mid-Resource Languages
- Title(参考訳): 中リソース言語における文脈化単語埋め込みへの一言語的アプローチ
- Authors: Pedro Javier Ortiz Su\'arez (ALMAnaCH, SU), Laurent Romary (ALMAnaCH),
Beno\^it Sagot (ALMAnaCH)
- Abstract要約: モノリンガルな文脈型単語埋め込み(ELMo)を5つの中間リソース言語に対して訓練する。
我々はこれらの言語に対するOSCARとウィキペディアベースのELMo埋め込みの性能を音声タグ付けと解析タスクで比較した。
我々は、Common-CrawlベースのOSCARデータのノイズにもかかわらず、OSCARでトレーニングされた埋め込みはウィキペディアでトレーニングされたモノリンガル埋め込みよりもはるかに優れていることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use the multilingual OSCAR corpus, extracted from Common Crawl via
language classification, filtering and cleaning, to train monolingual
contextualized word embeddings (ELMo) for five mid-resource languages. We then
compare the performance of OSCAR-based and Wikipedia-based ELMo embeddings for
these languages on the part-of-speech tagging and parsing tasks. We show that,
despite the noise in the Common-Crawl-based OSCAR data, embeddings trained on
OSCAR perform much better than monolingual embeddings trained on Wikipedia.
They actually equal or improve the current state of the art in tagging and
parsing for all five languages. In particular, they also improve over
multilingual Wikipedia-based contextual embeddings (multilingual BERT), which
almost always constitutes the previous state of the art, thereby showing that
the benefit of a larger, more diverse corpus surpasses the cross-lingual
benefit of multilingual embedding architectures.
- Abstract(参考訳): 我々は,言語分類,フィルタリング,クリーニングを通じてCommon Crawlから抽出した多言語OSCARコーパスを用いて,中級5言語を対象とした単言語文脈型単語埋め込み(ELMo)を訓練する。
次に、これらの言語に対するOSCARベースのELMo埋め込みとウィキペディアベースのELMo埋め込みのパフォーマンスを比較した。
我々は、Common-CrawlベースのOSCARデータのノイズにもかかわらず、OSCARでトレーニングされた埋め込みはウィキペディアでトレーニングされたモノリンガル埋め込みよりもはるかに優れていることを示した。
5つの言語すべてに対してタグ付けとパースを行う際に、そのテクニックの現在の状態を実際に同等または改善する。
特に、彼らは多言語wikipediaベースの文脈埋め込み(多言語bert)も改善しており、これはほとんど常に前段階の芸術を構成するため、より大きく多様なコーパスの利点は多言語埋め込みアーキテクチャの多言語的利益を超えることを示している。
関連論文リスト
- Multilingual Word Embeddings for Low-Resource Languages using Anchors
and a Chain of Related Languages [54.832599498774464]
我々は,言語連鎖に基づく新しいアプローチにより,多言語単語埋め込み(MWE)を構築することを提案する。
リソースの豊富なソースから始めて、ターゲットに到達するまで各言語をチェーンに順次追加することで、MWEを一度に1つの言語で構築します。
本手法は,4つの低リソース(5Mトークン)と4つの中程度の低リソース(50M)ターゲット言語を含む4つの言語ファミリーを対象としたバイリンガルレキシコン誘導法について検討した。
論文 参考訳(メタデータ) (2023-11-21T09:59:29Z) - Lip Reading for Low-resource Languages by Learning and Combining General
Speech Knowledge and Language-specific Knowledge [57.38948190611797]
本稿では,特に低リソース言語を対象とした新しい唇読解フレームワークを提案する。
低リソース言語は、そのモデルを訓練するのに十分なビデオテキストペアデータを持っていないため、低リソース言語のための唇読解モデルを開発するのは難しいと考えられている。
論文 参考訳(メタデータ) (2023-08-18T05:19:03Z) - Multilingual Language Model Adaptive Fine-Tuning: A Study on African
Languages [19.067718464786463]
我々は、アフリカ大陸で広く話されている17の最もリソースの多いアフリカ言語と他の3つの高リソース言語に対して、多言語適応微調整(MAFT)を行う。
多言語 PLM をさらに専門化するため,MAFT 以前の非アフリカ文字スクリプトに対応する埋め込み層から語彙トークンを除去した。
当社のアプローチでは,LAFTを個々の言語に適用する上で,ディスクスペースを大幅に削減する。
論文 参考訳(メタデータ) (2022-04-13T16:13:49Z) - Are Multilingual Models the Best Choice for Moderately Under-resourced
Languages? A Comprehensive Assessment for Catalan [0.05277024349608833]
この研究はカタルーニャ語に焦点を当て、中規模のモノリンガル言語モデルが最先端の大規模多言語モデルとどの程度競合するかを探求することを目的としている。
クリーンで高品質なカタルーニャ語コーパス(CaText)を構築し、カタルーニャ語(BERTa)のためのトランスフォーマーベースの言語モデルを訓練し、様々な設定で徹底的に評価する。
その結果,カタルーニャ語理解ベンチマーク(CLUB, Catalan Language Understanding Benchmark)が,オープンリソースとして公開された。
論文 参考訳(メタデータ) (2021-07-16T13:52:01Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
我々は,mbart を未熟な言語に効果的に適用するための,継続的な事前学習フレームワークを提案する。
その結果,mBARTベースラインの微調整性能を一貫して改善できることが示された。
私たちのアプローチは、両方の言語が元のmBARTの事前トレーニングで見られる翻訳ペアのパフォーマンスを高めます。
論文 参考訳(メタデータ) (2021-05-09T14:49:07Z) - When Word Embeddings Become Endangered [0.685316573653194]
本稿では,異なる資源豊富な言語の単語埋め込みとリソース不足言語の翻訳辞書を用いて,絶滅危惧言語の単語埋め込みを構築する手法を提案する。
言語間の単語埋め込みと感情分析モデルはすべて、簡単に使えるPythonライブラリを通じて公開されています。
論文 参考訳(メタデータ) (2021-03-24T15:42:53Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Anchor-based Bilingual Word Embeddings for Low-Resource Languages [76.48625630211943]
良質な単言語単語埋め込み(MWEs)は、大量のラベルのないテキストを持つ言語向けに構築することができる。
MWEは、数千の単語変換ペアだけでバイリンガル空間に整列することができる。
本稿では,高資源言語におけるベクトル空間を出発点とするBWEの構築手法を提案する。
論文 参考訳(メタデータ) (2020-10-23T19:17:00Z) - Improved acoustic word embeddings for zero-resource languages using
multilingual transfer [37.78342106714364]
我々は、ラベル付きデータに対する複数の良質な言語からの単一の教師付き埋め込みモデルを訓練し、それを目に見えないゼロ・リソース言語に適用する。
本稿では,3つのマルチリンガルリカレントニューラルネットワーク(RNN)モデルについて考察する。全ての訓練言語の連接語彙に基づいて訓練された分類器,複数言語から同一語と異なる単語を識別する訓練されたシームズRNN,単語ペアを再構成する訓練された対応オートエンコーダ(CAE)RNNである。
これらのモデルは、ゼロリソース言語自体で訓練された最先端の教師なしモデルよりも優れており、平均精度が30%以上向上している。
論文 参考訳(メタデータ) (2020-06-02T12:28:34Z) - That Sounds Familiar: an Analysis of Phonetic Representations Transfer
Across Languages [72.9927937955371]
我々は、他言語に存在するリソースを用いて、多言語自動音声認識モデルを訓練する。
我々は,多言語設定における全言語間での大幅な改善と,多言語設定におけるスターク劣化を観察した。
分析の結果、ひとつの言語に固有の電話でさえ、他の言語からのトレーニングデータを追加することで大きなメリットがあることがわかった。
論文 参考訳(メタデータ) (2020-05-16T22:28:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。