Learning compositional models of robot skills for task and motion
planning
- URL: http://arxiv.org/abs/2006.06444v2
- Date: Wed, 5 May 2021 03:00:32 GMT
- Title: Learning compositional models of robot skills for task and motion
planning
- Authors: Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and Tom\'as
Lozano-P\'erez
- Abstract summary: We learn to use sensorimotor primitives to solve complex long-horizon manipulation problems.
We use state-of-the-art methods for active learning and sampling.
We evaluate our approach both in simulation and in the real world through measuring the quality of the selected primitive actions.
- Score: 39.36562555272779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of this work is to augment the basic abilities of a robot by
learning to use sensorimotor primitives to solve complex long-horizon
manipulation problems. This requires flexible generative planning that can
combine primitive abilities in novel combinations and thus generalize across a
wide variety of problems. In order to plan with primitive actions, we must have
models of the actions: under what circumstances will executing this primitive
successfully achieve some particular effect in the world?
We use, and develop novel improvements on, state-of-the-art methods for
active learning and sampling. We use Gaussian process methods for learning the
constraints on skill effectiveness from small numbers of expensive-to-collect
training examples. Additionally, we develop efficient adaptive sampling methods
for generating a comprehensive and diverse sequence of continuous candidate
control parameter values (such as pouring waypoints for a cup) during planning.
These values become end-effector goals for traditional motion planners that
then solve for a full robot motion that performs the skill. By using learning
and planning methods in conjunction, we take advantage of the strengths of each
and plan for a wide variety of complex dynamic manipulation tasks. We
demonstrate our approach in an integrated system, combining traditional
robotics primitives with our newly learned models using an efficient robot task
and motion planner. We evaluate our approach both in simulation and in the real
world through measuring the quality of the selected primitive actions. Finally,
we apply our integrated system to a variety of long-horizon simulated and
real-world manipulation problems.
Related papers
- HYPERmotion: Learning Hybrid Behavior Planning for Autonomous Loco-manipulation [7.01404330241523]
HYPERmotion is a framework that learns, selects and plans behaviors based on tasks in different scenarios.
We combine reinforcement learning with whole-body optimization to generate motion for 38 actuated joints.
Experiments in simulation and real-world show that learned motions can efficiently adapt to new tasks.
arXiv Detail & Related papers (2024-06-20T18:21:24Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - Robot Skill Adaptation via Soft Actor-Critic Gaussian Mixture Models [29.34375999491465]
A core challenge for an autonomous agent acting in the real world is to adapt its repertoire of skills to cope with its noisy perception and dynamics.
To scale learning of skills to long-horizon tasks, robots should be able to learn and later refine their skills in a structured manner.
We proposeSAC-GMM, a novel hybrid approach that learns robot skills through a dynamical system and adapts the learned skills in their own trajectory distribution space.
arXiv Detail & Related papers (2021-11-25T15:36:11Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z) - Autonomous Planning Based on Spatial Concepts to Tidy Up Home
Environments with Service Robots [5.739787445246959]
We propose a novel planning method that can efficiently estimate the order and positions of the objects to be tidied up by learning the parameters of a probabilistic generative model.
The model allows a robot to learn the distributions of the co-occurrence probability of the objects and places to tidy up using the multimodal sensor information collected in a tidied environment.
We evaluate the effectiveness of the proposed method by an experimental simulation that reproduces the conditions of the Tidy Up Here task of the World Robot Summit 2018 international robotics competition.
arXiv Detail & Related papers (2020-02-10T11:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.