Learning Individually Inferred Communication for Multi-Agent Cooperation
- URL: http://arxiv.org/abs/2006.06455v2
- Date: Thu, 29 Apr 2021 03:43:12 GMT
- Title: Learning Individually Inferred Communication for Multi-Agent Cooperation
- Authors: Ziluo Ding, Tiejun Huang and Zongqing Lu
- Abstract summary: We propose Individually Inferred Communication (I2C) to enable agents to learn a prior for agent-agent communication.
The prior knowledge is learned via causal inference and realized by a feed-forward neural network.
I2C can not only reduce communication overhead but also improve the performance in a variety of multi-agent cooperative scenarios.
- Score: 37.56115000150748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication lays the foundation for human cooperation. It is also crucial
for multi-agent cooperation. However, existing work focuses on broadcast
communication, which is not only impractical but also leads to information
redundancy that could even impair the learning process. To tackle these
difficulties, we propose Individually Inferred Communication (I2C), a simple
yet effective model to enable agents to learn a prior for agent-agent
communication. The prior knowledge is learned via causal inference and realized
by a feed-forward neural network that maps the agent's local observation to a
belief about who to communicate with. The influence of one agent on another is
inferred via the joint action-value function in multi-agent reinforcement
learning and quantified to label the necessity of agent-agent communication.
Furthermore, the agent policy is regularized to better exploit communicated
messages. Empirically, we show that I2C can not only reduce communication
overhead but also improve the performance in a variety of multi-agent
cooperative scenarios, comparing to existing methods. The code is available at
https://github.com/PKU-AI-Edge/I2C.
Related papers
- T2MAC: Targeted and Trusted Multi-Agent Communication through Selective
Engagement and Evidence-Driven Integration [15.91335141803629]
We propose Targeted and Trusted Multi-Agent Communication (T2MAC) to help agents learn selective engagement and evidence-driven integration.
T2MAC enables agents to craft individualized messages, pinpoint ideal communication windows, and engage with reliable partners.
We evaluate our method on a diverse set of cooperative multi-agent tasks, with varying difficulties, involving different scales.
arXiv Detail & Related papers (2024-01-19T18:00:33Z) - Context-aware Communication for Multi-agent Reinforcement Learning [6.109127175562235]
We develop a context-aware communication scheme for multi-agent reinforcement learning (MARL)
In the first stage, agents exchange coarse representations in a broadcast fashion, providing context for the second stage.
Following this, agents utilize attention mechanisms in the second stage to selectively generate messages personalized for the receivers.
To evaluate the effectiveness of CACOM, we integrate it with both actor-critic and value-based MARL algorithms.
arXiv Detail & Related papers (2023-12-25T03:33:08Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
We address challenging multi-agent cooperation problems with decentralized control, raw sensory observations, costly communication, and multi-objective tasks instantiated in various embodied environments.
We harness the commonsense knowledge, reasoning ability, language comprehension, and text generation prowess of LLMs and seamlessly incorporate them into a cognitive-inspired modular framework.
Our experiments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4 can surpass strong planning-based methods and exhibit emergent effective communication.
arXiv Detail & Related papers (2023-07-05T17:59:27Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents.
We propose a novel communicative agent framework named role-playing.
Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems.
arXiv Detail & Related papers (2023-03-31T01:09:00Z) - AC2C: Adaptively Controlled Two-Hop Communication for Multi-Agent
Reinforcement Learning [4.884877440051105]
We propose a novel communication protocol called Adaptively Controlled Two-Hop Communication (AC2C)
AC2C employs an adaptive two-hop communication strategy to enable long-range information exchange among agents to boost performance.
We evaluate AC2C on three cooperative multi-agent tasks, and the experimental results show that it outperforms relevant baselines with lower communication costs.
arXiv Detail & Related papers (2023-02-24T09:00:34Z) - Over-communicate no more: Situated RL agents learn concise communication
protocols [78.28898217947467]
It is unclear how to design artificial agents that can learn to effectively and efficiently communicate with each other.
Much research on communication emergence uses reinforcement learning (RL)
We explore situated communication in a multi-step task, where the acting agent has to forgo an environmental action to communicate.
We find that while all tested pressures can disincentivise over-communication, situated communication does it most effectively and, unlike the cost on effort, does not negatively impact emergence.
arXiv Detail & Related papers (2022-11-02T21:08:14Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another.
We propose an alternative approach whereby agents communicate through an intelligent facilitator that learns to sift through and interpret signals provided by all agents to improve the agents' collective performance.
arXiv Detail & Related papers (2022-05-21T14:11:33Z) - Learning Selective Communication for Multi-Agent Path Finding [18.703918339797283]
Decision Causal Communication (DCC) is a simple yet efficient model to enable agents to select neighbors to conduct communication.
DCC is suitable for decentralized execution to handle large scale problems.
arXiv Detail & Related papers (2021-09-12T03:07:20Z) - Adversarial Attacks On Multi-Agent Communication [80.4392160849506]
Modern autonomous systems will soon be deployed at scale, opening up the possibility for cooperative multi-agent systems.
Such advantages rely heavily on communication channels which have been shown to be vulnerable to security breaches.
In this paper, we explore such adversarial attacks in a novel multi-agent setting where agents communicate by sharing learned intermediate representations.
arXiv Detail & Related papers (2021-01-17T00:35:26Z) - The Emergence of Adversarial Communication in Multi-Agent Reinforcement
Learning [6.18778092044887]
Many real-world problems require the coordination of multiple autonomous agents.
Recent work has shown the promise of Graph Neural Networks (GNNs) to learn explicit communication strategies that enable complex multi-agent coordination.
We show how a single self-interested agent is capable of learning highly manipulative communication strategies that allows it to significantly outperform a cooperative team of agents.
arXiv Detail & Related papers (2020-08-06T12:48:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.