Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel
- URL: http://arxiv.org/abs/2205.10607v2
- Date: Wed, 25 May 2022 16:11:52 GMT
- Title: Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel
- Authors: Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal,
Tianmin Shu, Michael Mozer, Nicolas Heess, Yoshua Bengio
- Abstract summary: In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another.
We propose an alternative approach whereby agents communicate through an intelligent facilitator that learns to sift through and interpret signals provided by all agents to improve the agents' collective performance.
- Score: 81.39444892747512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Multi-Agent Reinforcement Learning (MARL), specialized channels are often
introduced that allow agents to communicate directly with one another. In this
paper, we propose an alternative approach whereby agents communicate through an
intelligent facilitator that learns to sift through and interpret signals
provided by all agents to improve the agents' collective performance. To ensure
that this facilitator does not become a centralized controller, agents are
incentivized to reduce their dependence on the messages it conveys, and the
messages can only influence the selection of a policy from a fixed set, not
instantaneous actions given the policy. We demonstrate the strength of this
architecture over existing baselines on several cooperative MARL environments.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Learning to Cooperate and Communicate Over Imperfect Channels [27.241873614561538]
We consider a cooperative multi-agent system where the agents act and exchange information in a decentralized manner using a limited and unreliable channel.
Our method allows agents to dynamically adapt how much information to share by sending messages of different sizes.
We show that our approach outperforms approaches without adaptive capabilities in a novel cooperative digit-prediction environment.
arXiv Detail & Related papers (2023-11-24T12:15:48Z) - Multi-Agent Reinforcement Learning Based on Representational
Communication for Large-Scale Traffic Signal Control [13.844458247041711]
Traffic signal control (TSC) is a challenging problem within intelligent transportation systems.
We propose a communication-based MARL framework for large-scale TSC.
Our framework allows each agent to learn a communication policy that dictates "which" part of the message is sent "to whom"
arXiv Detail & Related papers (2023-10-03T21:06:51Z) - Scalable Communication for Multi-Agent Reinforcement Learning via
Transformer-Based Email Mechanism [9.607941773452925]
Communication can impressively improve cooperation in multi-agent reinforcement learning (MARL)
We propose a novel framework Transformer-based Email Mechanism (TEM) to tackle the scalability problem of MARL communication for partially-observed tasks.
arXiv Detail & Related papers (2023-01-05T05:34:30Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Multi-Agent Coordination via Multi-Level Communication [29.388570369796586]
We propose a novel multi-level communication scheme, Sequential Communication (SeqComm)
In this paper, we propose a novel multi-level communication scheme, Sequential Communication (SeqComm)
arXiv Detail & Related papers (2022-09-26T14:08:03Z) - Certifiably Robust Policy Learning against Adversarial Communication in
Multi-agent Systems [51.6210785955659]
Communication is important in many multi-agent reinforcement learning (MARL) problems for agents to share information and make good decisions.
However, when deploying trained communicative agents in a real-world application where noise and potential attackers exist, the safety of communication-based policies becomes a severe issue that is underexplored.
In this work, we consider an environment with $N$ agents, where the attacker may arbitrarily change the communication from any $CfracN-12$ agents to a victim agent.
arXiv Detail & Related papers (2022-06-21T07:32:18Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - Inference-Based Deterministic Messaging For Multi-Agent Communication [1.8275108630751844]
We study learning in matrix-based signaling games to show that decentralized methods can converge to a suboptimal policy.
We then propose a modification to the messaging policy, in which the sender deterministically chooses the best message that helps the receiver to infer the sender's observation.
arXiv Detail & Related papers (2021-03-03T03:09:22Z) - Adversarial Attacks On Multi-Agent Communication [80.4392160849506]
Modern autonomous systems will soon be deployed at scale, opening up the possibility for cooperative multi-agent systems.
Such advantages rely heavily on communication channels which have been shown to be vulnerable to security breaches.
In this paper, we explore such adversarial attacks in a novel multi-agent setting where agents communicate by sharing learned intermediate representations.
arXiv Detail & Related papers (2021-01-17T00:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.