論文の概要: Data Driven Prediction Architecture for Autonomous Driving and its
Application on Apollo Platform
- arxiv url: http://arxiv.org/abs/2006.06715v1
- Date: Thu, 11 Jun 2020 18:16:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 14:43:42.241503
- Title: Data Driven Prediction Architecture for Autonomous Driving and its
Application on Apollo Platform
- Title(参考訳): 自律運転のためのデータ駆動予測アーキテクチャとアポロプラットフォームへの応用
- Authors: Kecheng Xu, Xiangquan Xiao, Jinghao Miao, Qi Luo
- Abstract要約: 我々は,高度に自動化された学習ベース予測モデルパイプラインを導入し,異なる予測学習サブモジュールのデータアノテーション,特徴抽出,モデルトレーニング/チューニング,デプロイメントをサポートする。
このパイプラインは人間の介入なしに完全に自動化され、国によって異なるシナリオで大規模にデプロイされた場合、パラメータチューニングの効率が最大400%向上する。
- 参考スコア(独自算出の注目度): 1.1142354615369274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Driving vehicles (ADV) are on road with large scales. For safe and
efficient operations, ADVs must be able to predict the future states and
iterative with road entities in complex, real-world driving scenarios. How to
migrate a well-trained prediction model from one geo-fenced area to another is
essential in scaling the ADV operation and is difficult most of the time since
the terrains, traffic rules, entities distributions, driving/walking patterns
would be largely different in different geo-fenced operation areas. In this
paper, we introduce a highly automated learning-based prediction model
pipeline, which has been deployed on Baidu Apollo self-driving platform, to
support different prediction learning sub-modules' data annotation, feature
extraction, model training/tuning and deployment. This pipeline is completely
automatic without any human intervention and shows an up to 400\% efficiency
increase in parameter tuning, when deployed at scale in different scenarios
across nations.
- Abstract(参考訳): 自動運転車(ADV)は大規模道路を走行している。
安全かつ効率的な運用のためには、advは将来の状態を予測でき、複雑な現実の運転シナリオで道路エンティティと反復できる必要があります。
地形・交通規則・実体分布・運転・歩行パターンが異なる地域において大きく異なるため,適切に訓練された予測モデルをある地域から別の地域へ移行する方法はadv運用のスケールアップに不可欠であり,ほとんどの時間において困難である。
本稿では,baidu apolloの自動運転プラットフォームにデプロイされた高度に自動化された学習ベースの予測モデルパイプラインを紹介し,さまざまな予測学習サブモジュールのデータアノテーション,特徴抽出,モデルのトレーニング/チューニング,デプロイをサポートする。
このパイプラインは人間の介入なしに完全に自動化され、各国で異なるシナリオで大規模に展開する場合、パラメータチューニングの効率が最大400\%向上する。
関連論文リスト
- Bench2Drive: Towards Multi-Ability Benchmarking of Closed-Loop End-To-End Autonomous Driving [59.705635382104454]
本稿では,E2E-ADシステムのマルチ能力をクローズドループで評価するための最初のベンチマークであるBench2Driveを紹介する。
我々は最先端のE2E-ADモデルを実装し、Bench2Driveで評価し、現状と今後の方向性について洞察を提供する。
論文 参考訳(メタデータ) (2024-06-06T09:12:30Z) - MFTraj: Map-Free, Behavior-Driven Trajectory Prediction for Autonomous Driving [15.965681867350215]
本稿では,自律走行に適した軌道予測モデルを提案する。
歴史的軌跡データと新しい幾何学的動的グラフに基づく行動認識モジュールを組み合わせる。
計算効率とパラメータオーバーヘッドの低減を実現している。
論文 参考訳(メタデータ) (2024-05-02T13:13:52Z) - GenAD: Generalized Predictive Model for Autonomous Driving [75.39517472462089]
本稿では,自動運転分野における最初の大規模ビデオ予測モデルを紹介する。
我々のモデルはGenADと呼ばれ、新しい時間的推論ブロックでシーンを駆動する際の挑戦的なダイナミクスを扱う。
アクション条件付き予測モデルやモーションプランナーに適応することができ、現実世界の運転アプリケーションに大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-03-14T17:58:33Z) - Learning to Drive Anywhere [38.547150940396904]
地理的に認識された条件付き模倣学習モデルであるAnyDを提案する。
我々の重要な洞察は、高容量なジオロケーションベースのチャネルアテンションメカニズムを導入することである。
提案手法は、本質的に不均衡なデータ分布と位置依存イベントを効率的にスケールすることができる。
論文 参考訳(メタデータ) (2023-09-21T17:55:36Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
PPGeo (Policy Pre-training via Geometric Modeling) は,視覚運動運転における政策事前学習のための,直感的かつ直接的な完全自己教師型フレームワークである。
本研究では,大規模な未ラベル・未校正動画の3次元幾何学シーンをモデル化することにより,ポリシー表現を強力な抽象化として学習することを目的とする。
第1段階では、幾何モデリングフレームワークは、2つの連続したフレームを入力として、ポーズと深さの予測を同時に生成する。
第2段階では、視覚エンコーダは、将来のエゴモーションを予測し、現在の視覚観察のみに基づいて測光誤差を最適化することにより、運転方針表現を学習する。
論文 参考訳(メタデータ) (2023-01-03T08:52:49Z) - Fully End-to-end Autonomous Driving with Semantic Depth Cloud Mapping
and Multi-Agent [2.512827436728378]
本稿では,エンド・ツー・エンドとマルチタスクの学習方法を用いて学習した新しいディープラーニングモデルを提案する。
このモデルは,CARLAシミュレータ上で,現実の環境を模倣するために,通常の状況と異なる天候のシナリオを用いて評価する。
論文 参考訳(メタデータ) (2022-04-12T03:57:01Z) - Causal-based Time Series Domain Generalization for Vehicle Intention
Prediction [19.944268567657307]
交通参加者の行動の正確な予測は、自動運転車にとって必須の能力である。
本稿では,車両意図予測タスクにおける領域一般化問題に対処することを目的とする。
提案手法は、他の最先端領域の一般化や振る舞い予測手法と比較して、予測精度を一貫して改善する。
論文 参考訳(メタデータ) (2021-12-03T18:58:07Z) - Trajectory Prediction for Autonomous Driving with Topometric Map [10.831436392239585]
最先端の自動運転システムは、ローカライゼーションとナビゲーションのための高定義(HD)マップに依存している。
マップレス自動運転のためのエンドツーエンドトランスネットワークベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-09T08:16:16Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
複雑な都市環境での自律走行学習のためのニューラルモーションプランナー(NMP)を提案する。
我々は,生lidarデータとhdマップを入力とし,解釈可能な中間表現を生成する全体モデルを設計した。
北米のいくつかの都市で収集された実世界の運転データにおける我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2021-01-17T14:16:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。