論文の概要: Deep Reinforcement Learning for Electric Transmission Voltage Control
- arxiv url: http://arxiv.org/abs/2006.06728v2
- Date: Fri, 16 Oct 2020 03:05:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 13:40:29.723255
- Title: Deep Reinforcement Learning for Electric Transmission Voltage Control
- Title(参考訳): 送電電圧制御のための深部強化学習
- Authors: Brandon L. Thayer and Thomas J. Overbye
- Abstract要約: 深層強化学習(DRL)として知られる機械学習のサブセットは、人間によって実行される典型的なタスクの実行において、最近約束されている。
本稿では、送電電圧制御問題にDRLを適用し、電圧制御のためのオープンソースのDRL環境を示し、最大500台のバスで大規模に実験を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today, human operators primarily perform voltage control of the electric
transmission system. As the complexity of the grid increases, so does its
operation, suggesting additional automation could be beneficial. A subset of
machine learning known as deep reinforcement learning (DRL) has recently shown
promise in performing tasks typically performed by humans. This paper applies
DRL to the transmission voltage control problem, presents open-source DRL
environments for voltage control, proposes a novel modification to the "deep Q
network" (DQN) algorithm, and performs experiments at scale with systems up to
500 buses. The promise of applying DRL to voltage control is demonstrated,
though more research is needed to enable DRL-based techniques to consistently
outperform conventional methods.
- Abstract(参考訳): 今日、人間のオペレーターは主に電力系統の電圧制御を行っている。
グリッドの複雑さが増すにつれて、操作も難しくなり、追加の自動化が有効になる可能性がある。
深層強化学習(DRL)として知られる機械学習のサブセットは、人間が通常行うタスクの実行において、最近約束されている。
本稿では,drlを伝送電圧制御問題に適用し,電圧制御のためのオープンソースdrl環境を提示し,dqn(deep q network)アルゴリズムの新しい修正を提案し,500台までのシステムで大規模に実験を行う。
drlを電圧制御に適用するという約束は実証されているが、drlベースの手法が従来の手法を一貫して上回るためには、さらなる研究が必要である。
関連論文リスト
- Robust Deep Reinforcement Learning for Inverter-based Volt-Var Control in Partially Observable Distribution Networks [11.073055284983626]
DRLベースのアプローチの大きな問題は、アクティブな分散ネットワークにおける測定デプロイメントの制限である。
このような問題に対処するために,保守的な批評家と代理的な報酬を持つ堅牢なDRLアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-13T10:02:10Z) - Compressing Deep Reinforcement Learning Networks with a Dynamic
Structured Pruning Method for Autonomous Driving [63.155562267383864]
深部強化学習(DRL)は複雑な自律運転シナリオにおいて顕著な成功を収めている。
DRLモデルは、必然的に高いメモリ消費と計算をもたらし、リソース限定の自動運転デバイスへの広範な展開を妨げる。
そこで本研究では,DRLモデルの非重要なニューロンを段階的に除去する,新しい動的構造化プルーニング手法を提案する。
論文 参考訳(メタデータ) (2024-02-07T09:00:30Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
この問題に対処するために、ディジタルツイン(DT)高速化DRLソリューションを提案する。
ニューラルネットワークベースのDTは、システムをキューイングするためのカスタマイズされた出力層を備え、教師付き学習を通じてトレーニングされ、DRLモデルのトレーニングフェーズを支援するために使用される。
DT加速DRLは、直接訓練された最先端Q-ラーニングモデルと比較して、リソース利用率を40%以上向上させる。
論文 参考訳(メタデータ) (2023-10-07T09:09:19Z) - Real-Time Model-Free Deep Reinforcement Learning for Force Control of a
Series Elastic Actuator [56.11574814802912]
最先端のロボットアプリケーションは、歩行、揚力、操作などの複雑なタスクを達成するために、閉ループ力制御を備えた連続弾性アクチュエータ(SEAs)を使用する。
モデルフリーPID制御法はSEAの非線形性により不安定になりやすい。
深層強化学習は連続制御タスクに有効なモデルレス手法であることが証明されている。
論文 参考訳(メタデータ) (2023-04-11T00:51:47Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformerは元々自然言語処理用に開発されたもので、コンピュータビジョンでも大きな成功を収めている。
既存の開発をアーキテクチャ拡張と軌道最適化の2つのカテゴリに分類する。
ロボット操作,テキストベースのゲーム,ナビゲーション,自律運転におけるTRLの主な応用について検討する。
論文 参考訳(メタデータ) (2022-12-29T03:15:59Z) - Reinforcement Learning for Resilient Power Grids [0.23204178451683263]
従来の送電網は、より頻繁で極端な自然災害の下で時代遅れになっている。
ほとんどの電力グリッドシミュレータとRLインタフェースは、大規模なブラックアウトやネットワークがサブネットワークに分割された場合の電力グリッドのシミュレーションをサポートしない。
本研究では,既存のシミュレータとRLインタフェースであるGrid2Op上に構築された電力グリッドシミュレータを提案し,Grid2Opの動作と観測空間を制限する実験を行った。
論文 参考訳(メタデータ) (2022-12-08T04:40:14Z) - Efficient Learning of Voltage Control Strategies via Model-based Deep
Reinforcement Learning [9.936452412191326]
本稿では,電力系統の短期電圧安定性問題に対する緊急制御戦略を設計するためのモデルベース深部強化学習(DRL)手法を提案する。
近年, モデルフリーDRL方式の電力系統への適用が期待できるが, モデルフリー方式はサンプル効率の低下と訓練時間に悩まされている。
本稿では,Deep Neural Network(DNN)に基づく動的代理モデルを用いた新しいモデルベースDRLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-06T02:50:53Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
本稿では,変圧器を用いたマルチエージェント・アクタ・クリティカル・フレームワーク(T-MAAC)を提案する。
さらに、電圧制御タスクに適した新しい補助タスクトレーニングプロセスを採用し、サンプル効率を向上する。
論文 参考訳(メタデータ) (2022-06-08T07:48:42Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
AutoRL(Automated Reinforcement Learning)には、AutoMLの標準的なアプリケーションだけでなく、RL特有の課題も含まれている。
我々は共通の分類法を提供し、各領域を詳細に議論し、今後の研究者にとって関心のあるオープンな問題を提起する。
論文 参考訳(メタデータ) (2022-01-11T12:41:43Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
我々は、強化学習(RL)における微分可能なアーキテクチャ探索(DARTS)の最初の応用の1つであるRL-DARTSを紹介する。
画像エンコーダをDARTSスーパーネットに置き換えることにより、検索方法はサンプリング効率が高く、余分な計算資源が最小限必要であり、また、既存のコードに小さな変更を加える必要がなく、オフ・ポリティクスとオン・ポリティクスのRLアルゴリズムとも互換性がある。
スーパーネットはより優れたセルを徐々に学習し、手作業で設計したポリシーに対して高い競争力を持つ代替アーキテクチャへとつながり、RLポリシーの以前の設計選択も検証できることを示す。
論文 参考訳(メタデータ) (2021-06-04T03:08:43Z) - Scalable Voltage Control using Structure-Driven Hierarchical Deep
Reinforcement Learning [0.0]
本稿では,新しい階層型深層強化学習(drl)による電力系統の電圧制御設計を提案する。
本研究では,電力系統の領域分割構造を利用して,大規模グリッドモデルに適用可能な階層型drl設計を提案する。
地域別分散型RLエージェントを訓練し、各エリアの低レベルポリシーを算出し、低レベルポリシーの更新を使用して低レベルエージェントが行う制御アクションを効率的に調整する高レベルDRLエージェントを同時トレーニングします。
論文 参考訳(メタデータ) (2021-01-29T21:30:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。