Two sites coherence and visibility
- URL: http://arxiv.org/abs/2006.06948v1
- Date: Fri, 12 Jun 2020 05:06:37 GMT
- Title: Two sites coherence and visibility
- Authors: Abanoub Mikhail
- Abstract summary: Wave-particle duality and the superposition of quantum mechanical states furnish quantum mechanics with unique features.
The two principles are responsible for the observation of the interference effects of quantum particles such as electrons, atoms and molecules.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wave-particle duality and the superposition of quantum mechanical states
furnish quantum mechanics with unique features which distinguishes it from
classical mechanics and give it the apparently counter-intuition
interpretation. The two principles are responsible for the observation of the
interference effects of quantum particles such as electrons, atoms and
molecules. Visibility is a measure of the wave nature and can be though of as a
"normalized" coherence quantifier. Reduction in the visibility arises from
dephasing (decoherence): a process in which the relative phases get partially
or totally destroyed leading to domination of the particle nature. We calculate
the coherence and visibility of an ensemble of a single electron and two
electrons on two sites using the density matrix formulation. For such a system
of electrons, visibility and predictability (a particle nature measure) follow
an oscillatory-complementary temporal evolution and neither of them depends on
the single particle energy.
Related papers
- Separating the wave and particle attributes of two entangled photons [0.0]
In our common sense, the wave and particle properties of a quantum object are inseparable.
In this study, we put forward a feasible scheme to spatially separate the wave and particle attributes of two entangled photons.
Our scheme also guarantees that the observation of wave and particle properties of the two entangled photons always obey the Bohr's complementarity principle.
arXiv Detail & Related papers (2023-12-03T08:18:50Z) - A probabilistic view of wave-particle duality for single photons [0.0]
We show that the simultaneous measurement of the wave amplitude and the number of photons in the same beam of light is prohibited by the laws of quantum mechanics.
Our results suggest that the concept of interferometric duality'' could be eventually replaced by the more general one of continuous-vs-discrete duality''
arXiv Detail & Related papers (2023-03-27T13:21:25Z) - Experimental demonstration of separating the waveparticle duality of a
single photon with the quantum Cheshire cat [18.728749435511805]
We experimentally separated the wave and particle attributes of a single photon by exploiting the quantum Cheshire cat concept.
By applying a weak disturbance to the evolution of the system, we achieve an effect similar to the quantum Cheshire cat.
arXiv Detail & Related papers (2023-03-09T11:35:01Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum Origins of the Density Operator [0.0]
Students in quantum mechanics are taught that the wave function contains all knowable information about an isolated system.
This paper brings attention to the fact that the density matrix can be reconciled with the underlying quantum-mechanical description.
arXiv Detail & Related papers (2020-12-25T00:24:28Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Wave and particle properties can be spatially separated in a quantum
entity [0.0]
The principle of wave-particle duality has been deeply rooted in people's hearts.
In classical physics, a similar common sense is that a physical system is inseparable from its physical properties.
We find that wave and particle attributes of a quantum entity can be completely separated.
arXiv Detail & Related papers (2020-09-01T16:23:46Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.