Decorrelated Double Q-learning
- URL: http://arxiv.org/abs/2006.06956v1
- Date: Fri, 12 Jun 2020 05:59:05 GMT
- Title: Decorrelated Double Q-learning
- Authors: Gang Chen
- Abstract summary: We introduce the decorrelated double Q-learning (D2Q) to reduce the correlation between value function approximators.
The experimental results on a suite of MuJoCo continuous control tasks demonstrate that our decorrelated double Q-learning can effectively improve the performance.
- Score: 4.982806898121435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Q-learning with value function approximation may have the poor performance
because of overestimation bias and imprecise estimate. Specifically,
overestimation bias is from the maximum operator over noise estimate, which is
exaggerated using the estimate of a subsequent state. Inspired by the recent
advance of deep reinforcement learning and Double Q-learning, we introduce the
decorrelated double Q-learning (D2Q). Specifically, we introduce the
decorrelated regularization item to reduce the correlation between value
function approximators, which can lead to less biased estimation and low
variance. The experimental results on a suite of MuJoCo continuous control
tasks demonstrate that our decorrelated double Q-learning can effectively
improve the performance.
Related papers
- Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - A Perspective of Q-value Estimation on Offline-to-Online Reinforcement
Learning [54.48409201256968]
offline-to-online Reinforcement Learning (O2O RL) aims to improve the performance of offline pretrained policy using only a few online samples.
Most O2O methods focus on the balance between RL objective and pessimism, or the utilization of offline and online samples.
arXiv Detail & Related papers (2023-12-12T19:24:35Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - Simultaneous Double Q-learning with Conservative Advantage Learning for
Actor-Critic Methods [133.85604983925282]
We propose Simultaneous Double Q-learning with Conservative Advantage Learning (SDQ-CAL)
Our algorithm realizes less biased value estimation and achieves state-of-the-art performance in a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2022-05-08T09:17:16Z) - Online Target Q-learning with Reverse Experience Replay: Efficiently
finding the Optimal Policy for Linear MDPs [50.75812033462294]
We bridge the gap between practical success of Q-learning and pessimistic theoretical results.
We present novel methods Q-Rex and Q-RexDaRe.
We show that Q-Rex efficiently finds the optimal policy for linear MDPs.
arXiv Detail & Related papers (2021-10-16T01:47:41Z) - On the Estimation Bias in Double Q-Learning [20.856485777692594]
Double Q-learning is not fully unbiased and suffers from underestimation bias.
We show that such underestimation bias may lead to multiple non-optimal fixed points under an approximated Bellman operator.
We propose a simple but effective approach as a partial fix for the underestimation bias in double Q-learning.
arXiv Detail & Related papers (2021-09-29T13:41:24Z) - Parameter-Free Deterministic Reduction of the Estimation Bias in
Continuous Control [0.0]
We introduce a parameter-free, novel deep Q-learning variant to reduce this underestimation bias for continuous control.
We test the performance of our improvement on a set of MuJoCo and Box2D continuous control tasks.
arXiv Detail & Related papers (2021-09-24T07:41:07Z) - Estimation Error Correction in Deep Reinforcement Learning for
Deterministic Actor-Critic Methods [0.0]
In value-based deep reinforcement learning methods, approximation of value functions induces overestimation bias and leads to suboptimal policies.
We show that in deep actor-critic methods that aim to overcome the overestimation bias, if the reinforcement signals received by the agent have a high variance, a significant underestimation bias arises.
To minimize the underestimation, we introduce a parameter-free, novel deep Q-learning variant.
arXiv Detail & Related papers (2021-09-22T13:49:35Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
We propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods.
Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network.
arXiv Detail & Related papers (2020-09-29T04:58:17Z) - Maxmin Q-learning: Controlling the Estimation Bias of Q-learning [31.742397178618624]
Overestimation bias affects Q-learning because it approximates the maximum action value using the maximum estimated action value.
We propose a generalization of Q-learning, called emphMaxmin Q-learning, which provides a parameter to flexibly control bias.
We empirically verify that our algorithm better controls estimation bias in toy environments, and that it achieves superior performance on several benchmark problems.
arXiv Detail & Related papers (2020-02-16T02:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.