論文の概要: A Practical Sparse Approximation for Real Time Recurrent Learning
- arxiv url: http://arxiv.org/abs/2006.07232v1
- Date: Fri, 12 Jun 2020 14:38:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 01:55:32.212330
- Title: A Practical Sparse Approximation for Real Time Recurrent Learning
- Title(参考訳): 実時間再帰学習のための実時間スパース近似
- Authors: Jacob Menick, Erich Elsen, Utku Evci, Simon Osindero, Karen Simonyan,
Alex Graves
- Abstract要約: Real Time Recurrent Learning (RTRL)は、履歴ストレージの必要性をなくし、オンラインの重み更新を可能にする。
RTRL 影響行列に Sparse n-step Approximation (SnAp) を導入する。
高度にスパースなネットワークでは、n=2のSnApは引き続きトラクタブルであり、更新がオンラインで行われる場合の学習速度において、時間を通してバックプロパゲーションを上回ります。
- 参考スコア(独自算出の注目度): 38.19296522866088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current methods for training recurrent neural networks are based on
backpropagation through time, which requires storing a complete history of
network states, and prohibits updating the weights `online' (after every
timestep). Real Time Recurrent Learning (RTRL) eliminates the need for history
storage and allows for online weight updates, but does so at the expense of
computational costs that are quartic in the state size. This renders RTRL
training intractable for all but the smallest networks, even ones that are made
highly sparse.
We introduce the Sparse n-step Approximation (SnAp) to the RTRL influence
matrix, which only keeps entries that are nonzero within n steps of the
recurrent core. SnAp with n=1 is no more expensive than backpropagation, and we
find that it substantially outperforms other RTRL approximations with
comparable costs such as Unbiased Online Recurrent Optimization. For highly
sparse networks, SnAp with n=2 remains tractable and can outperform
backpropagation through time in terms of learning speed when updates are done
online. SnAp becomes equivalent to RTRL when n is large.
- Abstract(参考訳): 現在のリカレントニューラルネットワークのトレーニング方法は、時間経過によるバックプロパゲーションに基づいており、ネットワーク状態の完全な履歴を保存する必要がある。
リアルタイム・リカレント・ラーニング(RTRL)は、履歴記憶の必要性を排除し、オンラインの重み更新を可能にするが、状態サイズに準ずる計算コストを犠牲にしている。
これにより、RTRLのトレーニングは最小のネットワーク以外は、非常に疎いネットワークでも難解になる。
RTRL 影響行列に Sparse n-step Approximation (SnAp) を導入する。
n=1のSnApは、バックプロパゲーションほど高価ではないため、Unbiased Online Recurrent Optimizationのようなコストに匹敵する他のRTRL近似よりも大幅に優れている。
高度にスパースなネットワークでは、n=2のSnApは引き続きトラクタブルであり、更新がオンラインで行われる場合の学習速度において、時間を通してバックプロパゲーションを向上することができる。
SnAp は n が大きければ RTRL と同値となる。
関連論文リスト
- Real-Time Recurrent Learning using Trace Units in Reinforcement Learning [27.250024431890477]
リカレントニューラルネットワーク(RNN)は、部分的に観測可能な環境で表現を学ぶために使用される。
オンラインで学び、環境と継続的に交流するエージェントにとって、リアルタイム反復学習(RTRL)でRNNを訓練することが望ましい。
これらの洞察に基づいて、オンラインRLでRNNをトレーニングするための軽量で効果的なアプローチを提供します。
論文 参考訳(メタデータ) (2024-09-02T20:08:23Z) - Exploiting Symmetric Temporally Sparse BPTT for Efficient RNN Training [20.49255973077044]
この研究は、デルタRNNのトレーニングアルゴリズムを記述し、後方伝播フェーズにおける時間的間隔を利用してエッジでのトレーニングの計算要求を減らした。
その結果,Fluent Speech Commandsデータセット上で,56kパラメータのDelta LSTMをトレーニングするための行列演算の$sim$80%の削減効果が認められた。
提案したDelta RNNトレーニングは,限られたコンピューティングリソースを持つエッジデバイス上でのオンラインインクリメンタル学習に有用であることを示す。
論文 参考訳(メタデータ) (2023-12-14T23:07:37Z) - Efficient Real Time Recurrent Learning through combined activity and
parameter sparsity [0.5076419064097732]
時間によるバックプロパゲーション(BPTT)は、リカレントニューラルネットワーク(RNN)のトレーニングのための標準アルゴリズムである
BPTTはオンライン学習には不適であり、低リソースのリアルタイムシステムの実装に挑戦している。
実時間再帰学習(RTRL)の計算コストを削減できることを示す。
論文 参考訳(メタデータ) (2023-03-10T01:09:04Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングのためのエネルギー効率の高いモデルである。
本研究では,学習効率を大幅に向上させつつ,高い性能を達成できる空間学習時間(SLTT)法を提案する。
BPTTと比較して, メモリコストとトレーニング時間は, それぞれ70%以上, 50%以上削減されている。
論文 参考訳(メタデータ) (2023-02-28T05:01:01Z) - Scalable Real-Time Recurrent Learning Using Columnar-Constructive
Networks [19.248060562241296]
リアルタイム反復学習をスケーラブルにする2つの制約を提案する。
ネットワークを独立したモジュールに分解するか、段階的にネットワークを学習することで、RTRLをパラメータ数と線形にスケールできることを示す。
本稿では,動物学習とアタリ2600ゲームに対する事前学習ポリシーのポリシー評価により,Trncated-BPTTに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2023-01-20T23:17:48Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - Single-Shot Pruning for Offline Reinforcement Learning [47.886329599997474]
深層強化学習(Deep Reinforcement Learning, RL)は、複雑な現実世界の問題を解決するための強力なフレームワークである。
この問題に対処するひとつの方法は、必要なパラメータだけを残したニューラルネットワークをプルークすることです。
我々は,RLと単発プルーニングのギャップを埋め,オフラインRLに対する一般的なプルーニング手法を提案する。
論文 参考訳(メタデータ) (2021-12-31T18:10:02Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
リカレントニューラルネットワーク(RNN)を用いた逐次データ処理における連続学習手法の有効性を評価する。
RNNに弾性重み強化などの重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重
そこで本研究では,重み付け手法の性能が処理シーケンスの長さに直接的な影響を受けず,むしろ高動作メモリ要求の影響を受けていることを示す。
論文 参考訳(メタデータ) (2020-06-22T10:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。