Differentially Private Stochastic Coordinate Descent
- URL: http://arxiv.org/abs/2006.07272v4
- Date: Sun, 14 Mar 2021 11:36:13 GMT
- Title: Differentially Private Stochastic Coordinate Descent
- Authors: Georgios Damaskinos, Celestine Mendler-D\"unner, Rachid Guerraoui,
Nikolaos Papandreou, Thomas Parnell
- Abstract summary: We present DP-SCD, the first differentially private coordinate descent algorithm.
We argue that decoupling and parallelizing coordinate updates is essential for its utility.
- Score: 11.40366911494052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we tackle the challenge of making the stochastic coordinate
descent algorithm differentially private. Compared to the classical gradient
descent algorithm where updates operate on a single model vector and controlled
noise addition to this vector suffices to hide critical information about
individuals, stochastic coordinate descent crucially relies on keeping
auxiliary information in memory during training. This auxiliary information
provides an additional privacy leak and poses the major challenge addressed in
this work. Driven by the insight that under independent noise addition, the
consistency of the auxiliary information holds in expectation, we present
DP-SCD, the first differentially private stochastic coordinate descent
algorithm. We analyze our new method theoretically and argue that decoupling
and parallelizing coordinate updates is essential for its utility. On the
empirical side we demonstrate competitive performance against the popular
stochastic gradient descent alternative (DP-SGD) while requiring significantly
less tuning.
Related papers
- Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
User-level differentially private convex optimization (DP-SCO) has garnered significant attention due to the importance of safeguarding user privacy in machine learning applications.
Current methods, such as those based on differentially private gradient descent (DP-SGD), often struggle with high noise accumulation and suboptimal utility.
We introduce a novel linear-time algorithm that leverages robust statistics, specifically the median and trimmed mean, to overcome these challenges.
arXiv Detail & Related papers (2025-02-13T02:05:45Z) - Differentially Private Random Block Coordinate Descent [51.62669821275571]
We propose a differentially private random coordinate descent method that selects multiple coordinates with varying probabilities in each iteration using sketch matrices.
Our algorithm generalizes both DP-CD and the classical DP-SGD (Differentially Private Descent), while preserving the same utility guarantees.
arXiv Detail & Related papers (2024-12-22T15:06:56Z) - Differential Privacy Regularization: Protecting Training Data Through Loss Function Regularization [49.1574468325115]
Training machine learning models based on neural networks requires large datasets, which may contain sensitive information.
Differentially private SGD [DP-SGD] requires the modification of the standard gradient descent [SGD] algorithm for training new models.
A novel regularization strategy is proposed to achieve the same goal in a more efficient manner.
arXiv Detail & Related papers (2024-09-25T17:59:32Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Differentially Private Learning with Per-Sample Adaptive Clipping [8.401653565794353]
We propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function.
We show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.
arXiv Detail & Related papers (2022-12-01T07:26:49Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - Differentially Private Coordinate Descent for Composite Empirical Risk
Minimization [13.742100810492014]
Machine learning models can leak information about the data used to train them.
Differentially Private (DP) variants of optimization algorithms like Gradient Descent (DP-SGD) have been designed to mitigate this.
We propose a new method for composite Differentially Private Empirical Risk Minimization (DP-ERM): Differentially Private Coordinate Descent (DP-CD)
arXiv Detail & Related papers (2021-10-22T10:22:48Z) - Private Weighted Random Walk Stochastic Gradient Descent [21.23973736418492]
We consider a decentralized learning setting in which data is distributed over nodes in a graph.
We propose two algorithms based on two types of random walks that achieve, in a decentralized way, uniform sampling and importance sampling of the data.
arXiv Detail & Related papers (2020-09-03T16:52:13Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
Communication bottleneck has been a critical problem in large-scale deep learning.
We propose a new distributed error feedback (DEF) algorithm, which shows better convergence than error feedback for non-efficient distributed problems.
We also propose DEFA to accelerate the generalization of DEF, which shows better bounds than DEF.
arXiv Detail & Related papers (2020-04-11T03:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.