Differential Privacy Regularization: Protecting Training Data Through Loss Function Regularization
- URL: http://arxiv.org/abs/2409.17144v1
- Date: Wed, 25 Sep 2024 17:59:32 GMT
- Title: Differential Privacy Regularization: Protecting Training Data Through Loss Function Regularization
- Authors: Francisco Aguilera-MartÃnez, Fernando Berzal,
- Abstract summary: Training machine learning models based on neural networks requires large datasets, which may contain sensitive information.
Differentially private SGD [DP-SGD] requires the modification of the standard gradient descent [SGD] algorithm for training new models.
A novel regularization strategy is proposed to achieve the same goal in a more efficient manner.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training machine learning models based on neural networks requires large datasets, which may contain sensitive information. The models, however, should not expose private information from these datasets. Differentially private SGD [DP-SGD] requires the modification of the standard stochastic gradient descent [SGD] algorithm for training new models. In this short paper, a novel regularization strategy is proposed to achieve the same goal in a more efficient manner.
Related papers
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Sparsity-Preserving Differentially Private Training of Large Embedding
Models [67.29926605156788]
DP-SGD is a training algorithm that combines differential privacy with gradient descent.
Applying DP-SGD naively to embedding models can destroy gradient sparsity, leading to reduced training efficiency.
We present two new algorithms, DP-FEST and DP-AdaFEST, that preserve gradient sparsity during private training of large embedding models.
arXiv Detail & Related papers (2023-11-14T17:59:51Z) - Local Differential Privacy in Graph Neural Networks: a Reconstruction Approach [17.000441871334683]
We propose a learning framework that can provide node privacy at the user level, while incurring low utility loss.
We focus on a decentralized notion of Differential Privacy, namely Local Differential Privacy.
We develop reconstruction methods to approximate features and labels from perturbed data.
arXiv Detail & Related papers (2023-09-15T17:35:51Z) - Equivariant Differentially Private Deep Learning: Why DP-SGD Needs
Sparser Models [7.49320945341034]
We show that small and efficient architecture design can outperform current state-of-the-art models with substantially lower computational requirements.
Our results are a step towards efficient model architectures that make optimal use of their parameters.
arXiv Detail & Related papers (2023-01-30T17:43:47Z) - Post-Hoc Domain Adaptation via Guided Data Homogenization [0.0]
We propose to deal with changes in the data distribution via guided data homogenization.
This approach makes use of information about the training data contained implicitly in the deep learning model to learn a domain transfer function.
We demonstrate the potential of data homogenization through experiments on the CIFAR-10 and MNIST data sets.
arXiv Detail & Related papers (2021-04-08T09:18:48Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.