論文の概要: Human and Multi-Agent collaboration in a human-MARL teaming framework
- arxiv url: http://arxiv.org/abs/2006.07301v2
- Date: Mon, 1 Mar 2021 21:24:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 03:26:36.195340
- Title: Human and Multi-Agent collaboration in a human-MARL teaming framework
- Title(参考訳): 人間-MARLチームにおける人間とマルチエージェントのコラボレーション
- Authors: Neda Navidi, Francoi Chabo, Saga Kurandwa, Iv Lutigma, Vincent Robt,
Gregry Szrftgr, Andea Schuh
- Abstract要約: 強化学習は、観察、報酬の受け取り、エージェント間の内部相互作用から学ぶエージェントの効果的な結果を提供する。
本研究では,学習の源泉として人間とエージェントの相互作用を効率的に活用するオープンソースMARLフレームワークであるCOGMENTを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning provides effective results with agents learning from
their observations, received rewards, and internal interactions between agents.
This study proposes a new open-source MARL framework, called COGMENT, to
efficiently leverage human and agent interactions as a source of learning. We
demonstrate these innovations by using a designed real-time environment with
unmanned aerial vehicles driven by RL agents, collaborating with a human. The
results of this study show that the proposed collaborative paradigm and the
open-source framework leads to significant reductions in both human effort and
exploration costs.
- Abstract(参考訳): 強化学習は、観察、報酬、エージェント間の内的相互作用から学習するエージェントに効果的な結果を与える。
本研究では,学習の源泉として人間とエージェントの相互作用を効率的に活用するオープンソースMARLフレームワークであるCOGMENTを提案する。
我々は、RLエージェントによって駆動される無人航空機による設計されたリアルタイム環境を用いて、人間と協調してこれらのイノベーションを実証する。
本研究の結果から,提案する協調パラダイムとオープンソースフレームワークは,人的努力と探査費用の両面で大幅な削減につながることが明らかとなった。
関連論文リスト
- Enabling Multi-Robot Collaboration from Single-Human Guidance [5.016558275355615]
本研究では,人間一人の専門知識を活用することで,マルチエージェントシステムにおける協調行動の効率的な学習方法を提案する。
本研究では,人間の操作者が短時間に制御エージェントを動的に切り替えることによって,効果的に協調学習ができることを示す。
実験の結果,本手法は,人的指導を40分で最大58$%向上させることができた。
論文 参考訳(メタデータ) (2024-09-30T00:02:56Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
心の理論(ToM)は、他人を理解する上で重要な能力として、人間の協調とコミュニケーションに大きな影響を及ぼす。
Mutual Theory of Mind (MToM) は、ToM能力を持つAIエージェントが人間と協力するときに発生する。
エージェントのToM能力はチームのパフォーマンスに大きな影響を与えず,エージェントの人間的理解を高めていることがわかった。
論文 参考訳(メタデータ) (2024-09-13T13:19:48Z) - Collaborative Active Learning in Conditional Trust Environment [1.3846014191157405]
複数の協力者が既存のデータやモデルを開示することなく、組み合わせた機械学習機能を活用して新しいドメインを探索するパラダイムである、協調型アクティブラーニングについて検討する。
このコラボレーションは、(a)直接モデルとデータ開示の必要性を排除し、プライバシとセキュリティの懸念に対処する、(b)直接データ交換なしで異なるデータソースとインサイトの使用を可能にする、(c)共有ラベリングコストを通じてコスト効率とリソース効率を促進する、といういくつかの利点を提供する。
論文 参考訳(メタデータ) (2024-03-27T10:40:27Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Situation-Dependent Causal Influence-Based Cooperative Multi-agent
Reinforcement Learning [18.054709749075194]
我々は、状況依存因果関係に基づく協調マルチエージェント強化学習(SCIC)という新しいMARLアルゴリズムを提案する。
本研究の目的は,特定の状況におけるエージェント間因果関係の影響を,因果介入と条件付き相互情報を用いて検出することである。
結果として得られたアップデートは、協調した探索と本質的な報酬分布をリンクし、全体的なコラボレーションとパフォーマンスを高めた。
論文 参考訳(メタデータ) (2023-12-15T05:09:32Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。