論文の概要: Jointly Optimizing Dataset Size and Local Updates in Heterogeneous
Mobile Edge Learning
- arxiv url: http://arxiv.org/abs/2006.07402v3
- Date: Mon, 22 Feb 2021 05:17:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 04:52:27.353240
- Title: Jointly Optimizing Dataset Size and Local Updates in Heterogeneous
Mobile Edge Learning
- Title(参考訳): 異種モバイルエッジ学習におけるデータセットサイズとローカル更新の協調最適化
- Authors: Umair Mohammad, Sameh Sorour and Mohamed Hefeida
- Abstract要約: 本稿では、リソース制約のある無線エッジを介して接続された学習者を対象に訓練された分散機械学習(ML)モデルの精度を最大化する。
我々は,各学習者の不均一なコミュニケーションと計算能力を考慮して,ローカル/グローバルな更新数とタスクサイズ割り当てを共同で最適化し,損失を最小限に抑える。
- 参考スコア(独自算出の注目度): 11.191719032853527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes to maximize the accuracy of a distributed machine
learning (ML) model trained on learners connected via the resource-constrained
wireless edge. We jointly optimize the number of local/global updates and the
task size allocation to minimize the loss while taking into account
heterogeneous communication and computation capabilities of each learner. By
leveraging existing bounds on the difference between the training loss at any
given iteration and the theoretically optimal loss, we derive an expression for
the objective function in terms of the number of local updates. The resulting
convex program is solved to obtain the optimal number of local updates which is
used to obtain the total updates and batch sizes for each learner. The merits
of the proposed solution, which is heterogeneity aware (HA), are exhibited by
comparing its performance to the heterogeneity unaware (HU) approach.
- Abstract(参考訳): 本稿では、リソース制約のある無線エッジを介して接続された学習者を対象に訓練された分散機械学習(ML)モデルの精度を最大化する。
我々は,各学習者の不均一なコミュニケーションと計算能力を考慮して,ローカル/グローバルな更新数とタスクサイズ割り当てを共同で最適化し,損失を最小限に抑える。
任意のイテレーションにおけるトレーニング損失と理論的に最適な損失との差に関する既存の境界を利用することで、局所更新数という観点で目的関数の表現を導出する。
得られた凸プログラムは、各学習者毎の総更新数とバッチサイズを得るのに使用される最適なローカル更新数を求めるために解決される。
提案手法はヘテロゲニティ認識 (ha) であり, その性能をヘテロゲニティ認識 (hu) 法と比較することで得られる。
関連論文リスト
- Asynchronous Message-Passing and Zeroth-Order Optimization Based Distributed Learning with a Use-Case in Resource Allocation in Communication Networks [11.182443036683225]
分散学習と適応は大きな関心を集め、機械学習信号処理に広く応用されている。
本稿では、エージェントが共通のタスクに向けて協調するシナリオに焦点を当てる。
送信者として働くエージェントは、グローバルな報酬を最大化するために、それぞれのポリシーを共同で訓練する。
論文 参考訳(メタデータ) (2023-11-08T11:12:27Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Revisiting Communication-Efficient Federated Learning with Balanced
Global and Local Updates [14.851898446967672]
本研究では,地域研修の数とグローバルアグリゲーションの数との最適なトレードオフを調査し,分析する。
提案手法は予測精度の点で性能が向上し,ベースライン方式よりもはるかに高速に収束する。
論文 参考訳(メタデータ) (2022-05-03T13:05:26Z) - Contextual Model Aggregation for Fast and Robust Federated Learning in
Edge Computing [88.76112371510999]
フェデレーション学習は、ネットワークエッジにおける分散機械学習の第一候補である。
既存のアルゴリズムは、性能の緩やかな収束や堅牢性の問題に直面している。
そこで本稿では,損失低減に対する最適コンテキスト依存境界を実現するためのコンテキストアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T21:42:31Z) - BayGo: Joint Bayesian Learning and Information-Aware Graph Optimization [48.30183416069897]
BayGoは、ベイズ学習とグラフ最適化のフレームワークである。
本研究の枠組みは、完全連結および恒星トポロジーグラフと比較して、より高速な収束と精度を実現する。
論文 参考訳(メタデータ) (2020-11-09T11:16:55Z) - Fast-Convergent Federated Learning [82.32029953209542]
フェデレーション学習は、モバイルデバイスの現代的なネットワークを介して機械学習タスクを分散するための、有望なソリューションである。
本稿では,FOLBと呼ばれる高速収束型フェデレーション学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-26T14:37:51Z) - Differentially Private ADMM for Convex Distributed Learning: Improved
Accuracy via Multi-Step Approximation [10.742065340992525]
Alternating Direction Method of Multipliers (ADMM) は分散学習において一般的な計算方法である。
トレーニングデータが機密性のある場合には、交換されたイテレートが深刻なプライバシー上の懸念を引き起こす。
本稿では,様々な凸学習問題に対する精度の向上を図った分散ADMMを提案する。
論文 参考訳(メタデータ) (2020-05-16T07:17:31Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
機械学習アルゴリズムは、人工知能(AI)モデルをトレーニングするために、ネットワークエッジにデプロイされる。
本稿では,パラメータ(計算負荷)割り当てと帯域幅割り当ての新しい共同設計に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-10T05:52:15Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。