論文の概要: Attentive Feature Reuse for Multi Task Meta learning
- arxiv url: http://arxiv.org/abs/2006.07438v1
- Date: Fri, 12 Jun 2020 19:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 03:08:26.325341
- Title: Attentive Feature Reuse for Multi Task Meta learning
- Title(参考訳): マルチタスクメタ学習のための注意的特徴再利用
- Authors: Kiran Lekkala, Laurent Itti
- Abstract要約: 複数のタスクの同時学習のための新しいアルゴリズムを開発した。
本稿では,タスク毎に動的にネットワークを専門化するためのアテンション機構を提案する。
提案手法は,従来は目に見えなかった新しい環境における性能を向上させる。
- 参考スコア(独自算出の注目度): 17.8055398673228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop new algorithms for simultaneous learning of multiple tasks (e.g.,
image classification, depth estimation), and for adapting to unseen task/domain
distributions within those high-level tasks (e.g., different environments).
First, we learn common representations underlying all tasks. We then propose an
attention mechanism to dynamically specialize the network, at runtime, for each
task. Our approach is based on weighting each feature map of the backbone
network, based on its relevance to a particular task. To achieve this, we
enable the attention module to learn task representations during training,
which are used to obtain attention weights. Our method improves performance on
new, previously unseen environments, and is 1.5x faster than standard existing
meta learning methods using similar architectures. We highlight performance
improvements for Multi-Task Meta Learning of 4 tasks (image classification,
depth, vanishing point, and surface normal estimation), each over 10 to 25 test
domains/environments, a result that could not be achieved with standard meta
learning techniques like MAML.
- Abstract(参考訳): 本研究では,複数のタスクを同時に学習するアルゴリズム(画像分類,深度推定など)を開発し,高レベルタスク(環境など)における未確認タスク/ドメイン分布に適応する。
まず、すべてのタスクの基礎となる共通表現を学びます。
次に,各タスクの実行時にネットワークを動的に特殊化するための注意機構を提案する。
我々のアプローチは、特定のタスクに対する関連性に基づいて、バックボーンネットワークの各特徴マップを重み付けすることに基づいている。
これを実現するために,注意重みの獲得に使用されるトレーニング中に,注意モジュールがタスク表現を学習できるようにする。
提案手法は,従来のメタ学習手法よりも1.5倍高速で,新しい環境における性能向上を図っている。
我々は,MAMLのような標準的なメタ学習技術では達成できない10から25以上のテスト領域/環境において,4つのタスクのマルチタスクメタ学習の性能向上(画像分類,深度,消失点,表面正規化)を強調した。
関連論文リスト
- Meta-Learning with Heterogeneous Tasks [42.695853959923625]
HeTRoM(Heterogeneous Tasks Robust Meta-learning)
双方向最適化に基づく効率的な反復最適化アルゴリズム
その結果,提案手法の柔軟性が示され,多様なタスク設定に適応できることがわかった。
論文 参考訳(メタデータ) (2024-10-24T16:32:23Z) - YOLOR-Based Multi-Task Learning [12.5920336941241]
マルチタスク学習(MTL)は、単一のモデルを用いて複数のタスクを学習し、一般化と共有セマンティクスを前提として、これらすべてのタスクを共同で改善することを目的としている。
マルチタスクに特化したネットワークアーキテクチャYOLOR(You Only Learn One Representation)の構築を提案する。
本手法は,低パラメータ数を維持しつつ,事前学習を行わずに,全てのタスクにおける競合性能を実現する。
論文 参考訳(メタデータ) (2023-09-29T01:42:21Z) - Multi-Task Meta Learning: learn how to adapt to unseen tasks [4.287114092271669]
本研究は,Multi-Task Learning(MTL)とメタラーニングという2つの学習パラダイムを統合する,MTML(Multi-task Meta Learning)を提案する。
基本的な考え方はマルチタスクモデルをトレーニングすることであり、例えば、目に見えないタスクを導入すると、より少ないステップで学習できると同時に、パフォーマンスを従来の単一タスク学習と同程度に向上させることができる。
MTMLは、NYU-v2データセットの4つのタスクのうち3つと、タスクノミーデータセットの4つのうち2つのタスクに対して、最先端の結果を達成する。
論文 参考訳(メタデータ) (2022-10-13T12:59:54Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Set-based Meta-Interpolation for Few-Task Meta-Learning [79.4236527774689]
そこで本研究では,メタトレーニングタスクの分散化を目的とした,ドメインに依存しないタスク拡張手法Meta-Interpolationを提案する。
様々な領域にまたがる8つのデータセットに対してメタ補間の有効性を実証的に検証した。
論文 参考訳(メタデータ) (2022-05-20T06:53:03Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
現在のメタ学習アルゴリズムは多数のメタトレーニングタスクを必要としており、実際のシナリオではアクセスできない可能性がある。
タスクグラデーションを用いたメタラーニング(MLTI)により,タスクのペアをランダムにサンプリングし,対応する特徴やラベルを補間することにより,タスクを効果的に生成する。
実証的な実験では,提案する汎用MLTIフレームワークが代表的なメタ学習アルゴリズムと互換性があり,他の最先端戦略を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-04T20:15:34Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
数ショットの分類のためのメタラーニングの鍵となるアイデアは、テスト時に直面した数ショットの状況を模倣することである。
一般化性能を向上させるための適応型タスクサンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T03:15:53Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
汎用マルチタスク学習(GP-MTL)にニューラルアーキテクチャサーチ(NAS)を導入することを提案する。
異なるタスクの組み合わせに対応するため、GP-MTLネットワークを単一タスクのバックボーンに分割する。
また,探索されたアーキテクチャ間の性能ギャップを埋める単一ショット勾配に基づく探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-31T09:49:14Z) - Adversarial Continual Learning [99.56738010842301]
本稿では,タスク不変およびタスク特化機能に対する不整合表現を学習するハイブリッド連続学習フレームワークを提案する。
本モデルでは,タスク固有のスキルの忘れを防止するためにアーキテクチャの成長と,共有スキルを維持するための経験的リプレイアプローチを組み合わせる。
論文 参考訳(メタデータ) (2020-03-21T02:08:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。