Learning Causal Models Online
- URL: http://arxiv.org/abs/2006.07461v1
- Date: Fri, 12 Jun 2020 20:49:20 GMT
- Title: Learning Causal Models Online
- Authors: Khurram Javed, Martha White, Yoshua Bengio
- Abstract summary: Predictive models can rely on spurious correlations in the data for making predictions.
One solution for achieving strong generalization is to incorporate causal structures in the models.
We propose an online algorithm that continually detects and removes spurious features.
- Score: 103.87959747047158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive models -- learned from observational data not covering the
complete data distribution -- can rely on spurious correlations in the data for
making predictions. These correlations make the models brittle and hinder
generalization. One solution for achieving strong generalization is to
incorporate causal structures in the models; such structures constrain learning
by ignoring correlations that contradict them. However, learning these
structures is a hard problem in itself. Moreover, it's not clear how to
incorporate the machinery of causality with online continual learning. In this
work, we take an indirect approach to discovering causal models. Instead of
searching for the true causal model directly, we propose an online algorithm
that continually detects and removes spurious features. Our algorithm works on
the idea that the correlation of a spurious feature with a target is not
constant over-time. As a result, the weight associated with that feature is
constantly changing. We show that by continually removing such features, our
method converges to solutions that have strong generalization. Moreover, our
method combined with random search can also discover non-spurious features from
raw sensory data. Finally, our work highlights that the information present in
the temporal structure of the problem -- destroyed by shuffling the data -- is
essential for detecting spurious features online.
Related papers
- Towards Robust Text Classification: Mitigating Spurious Correlations with Causal Learning [2.7813683000222653]
We propose the Causally Calibrated Robust ( CCR) to reduce models' reliance on spurious correlations.
CCR integrates a causal feature selection method based on counterfactual reasoning, along with an inverse propensity weighting (IPW) loss function.
We show that CCR state-of-the-art performance among methods without group labels, and in some cases, it can compete with the models that utilize group labels.
arXiv Detail & Related papers (2024-11-01T21:29:07Z) - CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series [4.008958683836471]
CAnDOIT is a causal discovery method to reconstruct causal models using both observational and interventional data.
The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics.
A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub.
arXiv Detail & Related papers (2024-10-03T13:57:08Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
We train a supervised model that learns to predict a larger causal graph from the outputs of classical causal discovery algorithms run over subsets of variables.
Our approach is enabled by the observation that typical errors in the outputs of classical methods remain comparable across datasets.
Experiments on real and synthetic data demonstrate that this model maintains high accuracy in the face of misspecification or distribution shift.
arXiv Detail & Related papers (2024-02-02T21:57:58Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Towards Causal Deep Learning for Vulnerability Detection [31.59558109518435]
We introduce do calculus based causal learning to software engineering models.
Our results show that CausalVul consistently improved the model accuracy, robustness and OOD performance.
arXiv Detail & Related papers (2023-10-12T00:51:06Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.