CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series
- URL: http://arxiv.org/abs/2410.02844v3
- Date: Fri, 11 Oct 2024 09:48:39 GMT
- Title: CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series
- Authors: Luca Castri, Sariah Mghames, Marc Hanheide, Nicola Bellotto,
- Abstract summary: CAnDOIT is a causal discovery method to reconstruct causal models using both observational and interventional data.
The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics.
A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub.
- Score: 4.008958683836471
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The study of cause-and-effect is of the utmost importance in many branches of science, but also for many practical applications of intelligent systems. In particular, identifying causal relationships in situations that include hidden factors is a major challenge for methods that rely solely on observational data for building causal models. This paper proposes CAnDOIT, a causal discovery method to reconstruct causal models using both observational and interventional time-series data. The use of interventional data in the causal analysis is crucial for real-world applications, such as robotics, where the scenario is highly complex and observational data alone are often insufficient to uncover the correct causal structure. Validation of the method is performed initially on randomly generated synthetic models and subsequently on a well-known benchmark for causal structure learning in a robotic manipulation environment. The experiments demonstrate that the approach can effectively handle data from interventions and exploit them to enhance the accuracy of the causal analysis. A Python implementation of CAnDOIT has also been developed and is publicly available on GitHub: https://github.com/lcastri/causalflow.
Related papers
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
We employ a neural network trained to identify causality through supervised learning on simulated data.
Empirical results demonstrate the effectiveness of our method in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Learning domain-specific causal discovery from time series [7.298647409503783]
Causal discovery from time-varying data is important in neuroscience, medicine, and machine learning.
Human expertise is often not entirely accurate and tends to be outperformed in domains with abundant data.
In this study, we examine whether we can enhance domain-specific causal discovery for time series using a data-driven approach.
arXiv Detail & Related papers (2022-09-12T20:32:39Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - To do or not to do: finding causal relations in smart homes [2.064612766965483]
This paper introduces a new way to learn causal models from a mixture of experiments on the environment and observational data.
The core of our method is the use of selected interventions, especially our learning takes into account the variables where it is impossible to intervene.
We use our method on a smart home simulation, a use case where knowing causal relations pave the way towards explainable systems.
arXiv Detail & Related papers (2021-05-20T22:36:04Z) - Learning Causal Models Online [103.87959747047158]
Predictive models can rely on spurious correlations in the data for making predictions.
One solution for achieving strong generalization is to incorporate causal structures in the models.
We propose an online algorithm that continually detects and removes spurious features.
arXiv Detail & Related papers (2020-06-12T20:49:20Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
Imputated Causal Learning is proposed to perform iterative missing data imputation and causal structure discovery.
We show that ICL can outperform state-of-the-art methods under different missing data mechanisms.
arXiv Detail & Related papers (2020-01-15T14:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.