Uncertainty Quantification for Inferring Hawkes Networks
- URL: http://arxiv.org/abs/2006.07506v2
- Date: Wed, 28 Oct 2020 16:24:08 GMT
- Title: Uncertainty Quantification for Inferring Hawkes Networks
- Authors: Haoyun Wang, Liyan Xie, Alex Cuozzo, Simon Mak, Yao Xie
- Abstract summary: We develop a statistical inference framework to learn causal relationships between nodes from networked data.
We provide uncertainty quantification for the maximum likelihood estimate of the network Hawkes process.
- Score: 13.283258096829146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate Hawkes processes are commonly used to model streaming networked
event data in a wide variety of applications. However, it remains a challenge
to extract reliable inference from complex datasets with uncertainty
quantification. Aiming towards this, we develop a statistical inference
framework to learn causal relationships between nodes from networked data,
where the underlying directed graph implies Granger causality. We provide
uncertainty quantification for the maximum likelihood estimate of the network
multivariate Hawkes process by providing a non-asymptotic confidence set. The
main technique is based on the concentration inequalities of continuous-time
martingales. We compare our method to the previously-derived asymptotic Hawkes
process confidence interval, and demonstrate the strengths of our method in an
application to neuronal connectivity reconstruction.
Related papers
- A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
Advancements in image segmentation play an integral role within the greater scope of Deep Learning-based computer vision.
Uncertainty quantification has been extensively studied within this context, enabling expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision making.
This work provides a comprehensive overview of probabilistic segmentation by discussing fundamental concepts in uncertainty that govern advancements in the field and the application to various tasks.
arXiv Detail & Related papers (2024-11-25T13:26:09Z) - Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning [5.318766629972959]
Uncertainty quantification is a crucial but challenging task in many high-dimensional regression or learning problems.
We develop a new data-driven approach for UQ in regression that applies both to classical regression approaches as well as to neural networks.
arXiv Detail & Related papers (2024-07-18T16:42:10Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
We study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable.
We introduce a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-06-07T10:14:18Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Statistical Inference for Networks of High-Dimensional Point Processes [19.38934705817528]
We develop a new statistical inference procedure for high-dimensional Hawkes processes.
The key ingredient for this inference procedure is a new concentration inequality on the first- and second-order statistics.
We demonstrate their utility by applying them to a neuron spike train data set.
arXiv Detail & Related papers (2020-07-15T02:46:36Z) - Latent Network Structure Learning from High Dimensional Multivariate
Point Processes [5.079425170410857]
We propose a new class of nonstationary Hawkes processes to characterize the complex processes underlying the observed data.
We estimate the latent network structure using an efficient sparse least squares estimation approach.
We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.
arXiv Detail & Related papers (2020-04-07T17:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.