One step closer to unbiased aleatoric uncertainty estimation
- URL: http://arxiv.org/abs/2312.10469v2
- Date: Wed, 20 Dec 2023 16:02:32 GMT
- Title: One step closer to unbiased aleatoric uncertainty estimation
- Authors: Wang Zhang and Ziwen Ma and Subhro Das and Tsui-Wei Weng and Alexandre
Megretski and Luca Daniel and Lam M. Nguyen
- Abstract summary: We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
- Score: 71.55174353766289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are powerful tools in various applications, and quantifying
their uncertainty is crucial for reliable decision-making. In the deep learning
field, the uncertainties are usually categorized into aleatoric (data) and
epistemic (model) uncertainty. In this paper, we point out that the existing
popular variance attenuation method highly overestimates aleatoric uncertainty.
To address this issue, we propose a new estimation method by actively
de-noising the observed data. By conducting a broad range of experiments, we
demonstrate that our proposed approach provides a much closer approximation to
the actual data uncertainty than the standard method.
Related papers
- How disentangled are your classification uncertainties? [6.144680854063938]
Uncertainty Quantification in Machine Learning has progressed to predicting the source of uncertainty in a prediction.
This work proposes a set of experiments to evaluate disentanglement of aleatoric and epistemic uncertainty.
arXiv Detail & Related papers (2024-08-22T07:42:43Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement [7.6146285961466]
In this paper, we generalize methods to produce disentangled uncertainties to work with different uncertainty quantification methods.
We show that there is an interaction between learning aleatoric and epistemic uncertainty, which is unexpected and violates assumptions on aleatoric uncertainty.
We expect that our formulation and results help practitioners and researchers choose uncertainty methods and expand the use of disentangled uncertainties.
arXiv Detail & Related papers (2022-04-20T08:41:37Z) - How certain are your uncertainties? [0.3655021726150368]
Measures of uncertainty in the output of a deep learning method are useful in several ways.
This work investigates the stability of these uncertainty measurements, in terms of both magnitude and spatial pattern.
arXiv Detail & Related papers (2022-03-01T05:25:02Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Adversarial Attack for Uncertainty Estimation: Identifying Critical
Regions in Neural Networks [0.0]
We propose a novel method to capture data points near decision boundary in neural network that are often referred to a specific type of uncertainty.
Uncertainty estimates are derived from the input perturbations, unlike previous studies that provide perturbations on the model's parameters.
We show that the proposed method has revealed a significant outperformance over other methods and provided less risk to capture model uncertainty in machine learning.
arXiv Detail & Related papers (2021-07-15T21:30:26Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.