Data-driven determination of the spin Hamiltonian parameters and their
uncertainties: The case of the zigzag-chain compound KCu$_4$P$_3$O$_{12}$
- URL: http://arxiv.org/abs/2006.07523v1
- Date: Sat, 13 Jun 2020 00:47:14 GMT
- Title: Data-driven determination of the spin Hamiltonian parameters and their
uncertainties: The case of the zigzag-chain compound KCu$_4$P$_3$O$_{12}$
- Authors: Ryo Tamura, Koji Hukushima, Akira Matsuo, Koichi Kindo, Masashi Hase
- Abstract summary: Using our technique, an effective model of KCu$_4$P$_3$O$_12$ is determined from the experimentally observed magnetic susceptibility and magnetization curves.
The obtained effective model is useful to predict hard-to-measure properties such as spin gap, spin configuration at the ground state, magnetic specific heat, and magnetic entropy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a data-driven technique to estimate the spin Hamiltonian,
including uncertainty, from multiple physical quantities. Using our technique,
an effective model of KCu$_4$P$_3$O$_{12}$ is determined from the
experimentally observed magnetic susceptibility and magnetization curves with
various temperatures under high magnetic fields. An effective model, which is
the quantum Heisenberg model on a zigzag chain with eight spins having $J_1=
-8.54 \pm 0.51 \{\rm meV}$, $J_2 = -2.67 \pm 1.13 \{\rm meV}$, $J_3 = -3.90 \pm
0.15 \{\rm meV}$, and $J_4 = 6.24 \pm 0.95 \{\rm meV}$, describes these
measured results well. These uncertainties are successfully determined by the
noise estimation. The relations among the estimated magnetic interactions or
physical quantities are also discussed. The obtained effective model is useful
to predict hard-to-measure properties such as spin gap, spin configuration at
the ground state, magnetic specific heat, and magnetic entropy.
Related papers
- Unveiling nonmagnetic phase and many-body entanglement in two-dimensional random quantum magnets Sr$_2$CuTe$_{1-x}$W$_x$O$_6$ [2.7204116565403744]
We capture the physics of a series of spin stripe/2$ Heisenberg antiferromagnet compounds on a square lattice.
An intermediate range of $x in [0.08, 0.55]$ is identified for a nonmagnetic phase without the long-range N'eel or stripe order.
Deep inside this phase around $x = 0.3$, we observe signatures potentially linked to randomness-induced short-range spin-liquid-like states.
arXiv Detail & Related papers (2024-07-08T13:22:51Z) - Cooperative quantum tunneling of the magnetization in Fe-doped Li$_3$N [0.0]
The spin-reversal in dilute Li$$$(Li$_1-x$Fe$_x$)N with $x 1$ % is dominated by resonant quantum tunneling of spatially well-separated states.
We report on the effect of finite couplings between those states that give rise to cooperative, simultaneous quantum tunneling of two spins.
arXiv Detail & Related papers (2023-10-27T14:59:42Z) - Metal-insulator transition and magnetism of SU(3) fermions in the square
lattice [0.0]
We study the SU(3) symmetric Fermi-Hubbard model (FHM) in the square lattice at $1/3$-filling.
We present the different regimes of the model in the $T-U$ plane, which are characterized by local and short-range correlations.
We describe how the features of the regimes in the $T$-$U$ plane can be explored with alkaline-earth-like atoms in optical lattices.
arXiv Detail & Related papers (2023-06-18T22:04:53Z) - Models for quantum measurement of particles with higher spin [0.0]
The Curie-Weiss model for quantum measurement describes the measurement of a spin-$frac12$ by an apparatus consisting of an Ising magnet of many spins.
The Hamiltonian of the magnet, its entropy and the interaction Hamiltonian possess an invariance under the permutation $sto s+1$ mod $2l+1$.
arXiv Detail & Related papers (2023-03-07T11:57:11Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Weak three-dimensional coupling of Heisenberg quantum spin chains in
SrCuTe$_{2}$O$_{6}$ [0.0]
The magnetic Hamiltonian of the Heisenberg quantum antiferromagnet SrCuTe$_2$O$_6$ is studied by inelastic neutron scattering technique on powder and single crystalline samples above and below the magnetic transition temperatures at 8 K and 2 K.
arXiv Detail & Related papers (2021-07-12T11:44:42Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.