$\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator
- URL: http://arxiv.org/abs/2006.07571v3
- Date: Fri, 5 Mar 2021 05:16:43 GMT
- Title: $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator
- Authors: Masahiro Fujisawa, Takeshi Teshima, Issei Sato, Masashi Sugiyama
- Abstract summary: We propose to use a nearest-neighbor-based $gamma$-divergence estimator as a data discrepancy measure.
Our method achieves significantly higher robustness than existing discrepancy measures.
- Score: 95.71091446753414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximate Bayesian computation (ABC) is a likelihood-free inference method
that has been employed in various applications. However, ABC can be sensitive
to outliers if a data discrepancy measure is chosen inappropriately. In this
paper, we propose to use a nearest-neighbor-based $\gamma$-divergence estimator
as a data discrepancy measure. We show that our estimator possesses a suitable
theoretical robustness property called the redescending property. In addition,
our estimator enjoys various desirable properties such as high flexibility,
asymptotic unbiasedness, almost sure convergence, and linear-time computational
complexity. Through experiments, we demonstrate that our method achieves
significantly higher robustness than existing discrepancy measures.
Related papers
- An Asymptotically Optimal Coordinate Descent Algorithm for Learning Bayesian Networks from Gaussian Models [6.54203362045253]
We study the problem of learning networks from continuous observational data, generated according to a linear Gaussian structural equation model.
We propose a new coordinate descent algorithm that converges to the optimal objective value of the $ell$penalized maximum likelihood.
arXiv Detail & Related papers (2024-08-21T20:18:03Z) - A Mean Field Approach to Empirical Bayes Estimation in High-dimensional
Linear Regression [8.345523969593492]
We study empirical Bayes estimation in high-dimensional linear regression.
We adopt a variational empirical Bayes approach, introduced originally in Carbonetto and Stephens (2012) and Kim et al. (2022).
This provides the first rigorous empirical Bayes method in a high-dimensional regression setting without sparsity.
arXiv Detail & Related papers (2023-09-28T20:51:40Z) - Robust computation of optimal transport by $\beta$-potential
regularization [79.24513412588745]
Optimal transport (OT) has become a widely used tool in the machine learning field to measure the discrepancy between probability distributions.
We propose regularizing OT with the beta-potential term associated with the so-called $beta$-divergence.
We experimentally demonstrate that the transport matrix computed with our algorithm helps estimate a probability distribution robustly even in the presence of outliers.
arXiv Detail & Related papers (2022-12-26T18:37:28Z) - Statistical, Robustness, and Computational Guarantees for Sliced
Wasserstein Distances [18.9717974398864]
Sliced Wasserstein distances preserve properties of classic Wasserstein distances while being more scalable for computation and estimation in high dimensions.
We quantify this scalability from three key aspects: (i) empirical convergence rates; (ii) robustness to data contamination; and (iii) efficient computational methods.
arXiv Detail & Related papers (2022-10-17T15:04:51Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
We prove that our algorithms require a number of evaluations gradient independent of training set size and number of parameters.
Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.
arXiv Detail & Related papers (2020-10-12T17:41:44Z) - $\beta$-Cores: Robust Large-Scale Bayesian Data Summarization in the
Presence of Outliers [14.918826474979587]
The quality of classic Bayesian inference depends critically on whether observations conform with the assumed data generating model.
We propose a variational inference method that, in a principled way, can simultaneously scale to large datasets.
We illustrate the applicability of our approach in diverse simulated and real datasets, and various statistical models.
arXiv Detail & Related papers (2020-08-31T13:47:12Z) - Scalable Distributed Approximation of Internal Measures for Clustering
Evaluation [5.144809478361603]
Internal measure for clustering evaluation is the silhouette coefficient, whose computation requires a quadratic number of distance calculations.
We present the first scalable algorithm to compute such a rigorous approximation for the evaluation of clusterings based on any metric distances.
We also prove that the algorithm can be adapted to obtain rigorous approximations of other internal measures of clustering quality, such as cohesion and separation.
arXiv Detail & Related papers (2020-03-03T10:28:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.