論文の概要: Mining Implicit Relevance Feedback from User Behavior for Web Question
Answering
- arxiv url: http://arxiv.org/abs/2006.07581v2
- Date: Tue, 16 Jun 2020 01:10:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 21:16:51.648629
- Title: Mining Implicit Relevance Feedback from User Behavior for Web Question
Answering
- Title(参考訳): Web 質問応答におけるユーザ行動からの重要度フィードバックのマイニング
- Authors: Linjun Shou, Shining Bo, Feixiang Cheng, Ming Gong, Jian Pei, Daxin
Jiang
- Abstract要約: 本研究は,ユーザ行動と通過関連性との関連性を検討するための最初の研究である。
提案手法は,追加のラベル付きデータを使わずにパスランキングの精度を大幅に向上させる。
実際にこの研究は、グローバルな商用検索エンジンにおけるQAサービスの人為的ラベリングコストを大幅に削減する効果が証明されている。
- 参考スコア(独自算出の注目度): 92.45607094299181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training and refreshing a web-scale Question Answering (QA) system for a
multi-lingual commercial search engine often requires a huge amount of training
examples. One principled idea is to mine implicit relevance feedback from user
behavior recorded in search engine logs. All previous works on mining implicit
relevance feedback target at relevance of web documents rather than passages.
Due to several unique characteristics of QA tasks, the existing user behavior
models for web documents cannot be applied to infer passage relevance. In this
paper, we make the first study to explore the correlation between user behavior
and passage relevance, and propose a novel approach for mining training data
for Web QA. We conduct extensive experiments on four test datasets and the
results show our approach significantly improves the accuracy of passage
ranking without extra human labeled data. In practice, this work has proved
effective to substantially reduce the human labeling cost for the QA service in
a global commercial search engine, especially for languages with low resources.
Our techniques have been deployed in multi-language services.
- Abstract(参考訳): 多言語商用検索エンジンのためのwebスケール質問応答システム(qa)のトレーニングとリフレッシュには、多くのトレーニング例が必要になる。
原則の1つは、検索エンジンログに記録されたユーザーの行動から暗黙の妥当性のフィードバックを掘り出すことである。
以前のすべての作業は、パスではなく、webドキュメントの関連性をターゲットとする暗黙の関連性フィードバックをマイニングしている。
QAタスクの特徴はいくつかあるため,既存のWebドキュメントのユーザ行動モデルは,経路関係の推測には適用できない。
本稿では,ユーザ行動と通過関連性の相関性を検討するための最初の研究を行い,Web QAのための新たなトレーニングデータマイニング手法を提案する。
我々は4つのテストデータセットについて広範な実験を行い,提案手法は人間のラベル付きデータなしで,パスランキングの精度を大幅に向上させることを示した。
実のところ、この研究はグローバルな商用検索エンジン、特に低リソース言語におけるQAサービスの人為的ラベリングコストを大幅に削減する効果が証明されている。
私たちの技術は多言語サービスにデプロイされています。
関連論文リスト
- Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - Retrieval-Generation Synergy Augmented Large Language Models [30.53260173572783]
本稿では,反復的な検索・生成協調フレームワークを提案する。
シングルホップQAとマルチホップQAタスクを含む4つの質問応答データセットの実験を行った。
論文 参考訳(メタデータ) (2023-10-08T12:50:57Z) - A Deep Reinforcement Learning Approach for Interactive Search with
Sentence-level Feedback [12.712416630402119]
対話型検索は、ユーザからのインタラクションフィードバックを取り入れることで、より良いエクスペリエンスを提供することができる。
既存の最先端(SOTA)システムは、相互作用を組み込むために強化学習(RL)モデルを使用している。
しかしそのようなフィードバックには、広範囲なRLアクションスペース探索と大量の注釈付きデータが必要である。
この研究は、新しいディープQラーニング(DQ)アプローチであるDQrankを提案する。
論文 参考訳(メタデータ) (2023-10-03T18:45:21Z) - Unified Embedding Based Personalized Retrieval in Etsy Search [0.206242362470764]
グラフ, 変換器, 項ベース埋め込みを終末に組み込んだ統合埋め込みモデルを学習することを提案する。
我々のパーソナライズされた検索モデルは、検索購入率5.58%、サイト全体のコンバージョン率2.63%によって、検索体験を著しく改善する。
論文 参考訳(メタデータ) (2023-06-07T23:24:50Z) - Utilizing Background Knowledge for Robust Reasoning over Traffic
Situations [63.45021731775964]
我々は、インテリジェントトランスポーテーションの補完的な研究側面である交通理解に焦点を当てる。
本研究は,豊富なコモンセンス知識を前提として,テキストベースの手法とデータセットを対象とする。
交通状況に対するゼロショットQAには3つの知識駆動アプローチを採用しています。
論文 参考訳(メタデータ) (2022-12-04T09:17:24Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - Distantly Supervised Transformers For E-Commerce Product QA [5.460297795256275]
Eコマースサービスの商品ページで、実用的なインスタント質問回答(QA)システムを提案します。
ユーザクエリごとに、関連するコミュニティの質問回答(CQA)ペアが取得される。
提案するトランスフォーマーモデルでは,統一構文表現と意味表現を共同学習し,堅牢な関連性関数を学習する。
論文 参考訳(メタデータ) (2021-04-07T06:37:16Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。