論文の概要: Distant Transfer Learning via Deep Random Walk
- arxiv url: http://arxiv.org/abs/2006.07622v1
- Date: Sat, 13 Jun 2020 11:31:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 20:42:14.206967
- Title: Distant Transfer Learning via Deep Random Walk
- Title(参考訳): 深部ランダムウォークによる遠隔転送学習
- Authors: Qiao Xiao and Yu Zhang
- Abstract要約: 本稿では,DeEp Random Walk basEd distaNt Transfer (DERWENT) 法を提案する。
データグラフ上のランダムウォーク手法によって同定されたシーケンスに基づいて、提案したDERWENTモデルは、類似した配列内の隣接データポイントを強制する。
いくつかのベンチマークデータセットに関する実証研究は、提案したDERWENTアルゴリズムが最先端の性能をもたらすことを示した。
- 参考スコア(独自算出の注目度): 7.957823585750222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning, which is to improve the learning performance in the target
domain by leveraging useful knowledge from the source domain, often requires
that those two domains are very close, which limits its application scope.
Recently, distant transfer learning has been studied to transfer knowledge
between two distant or even totally unrelated domains via auxiliary domains
that are usually unlabeled as a bridge in the spirit of human transitive
inference that it is possible to connect two completely unrelated concepts
together through gradual knowledge transfer. In this paper, we study distant
transfer learning by proposing a DeEp Random Walk basEd distaNt Transfer
(DERWENT) method. Different from existing distant transfer learning models that
implicitly identify the path of knowledge transfer between the source and
target instances through auxiliary instances, the proposed DERWENT model can
explicitly learn such paths via the deep random walk technique. Specifically,
based on sequences identified by the random walk technique on a data graph
where source and target data have no direct edges, the proposed DERWENT model
enforces adjacent data points in a squence to be similar, makes the ending data
point be represented by other data points in the same sequence, and considers
weighted training losses of source data. Empirical studies on several benchmark
datasets demonstrate that the proposed DERWENT algorithm yields the
state-of-the-art performance.
- Abstract(参考訳): ソースドメインから有用な知識を活用することで、ターゲットドメインでの学習パフォーマンスを改善するためのトランスファーラーニングは、これらの2つのドメインが非常に近いことを必要とし、アプリケーションのスコープを制限します。
近年、人間の推移的推論の精神において、通常、ブリッジとしてラベルが付かない補助ドメインを通して、2つの完全に無関係なドメイン間の知識を段階的な知識の伝達を通じて相互に結びつけることができるという、遠い転送学習が研究されている。
本稿では,深部ランダムウォークに基づく遠方移動(derwent)法を提案することで,遠方移動学習について検討する。
ソースインスタンスとターゲットインスタンス間の知識伝達経路を暗黙的に識別する既存の遠方移動学習モデルとは異なり、提案したDERWENTモデルは、深層ランダムウォーク手法により、これらの経路を明示的に学習することができる。
具体的には、ソースとターゲットデータが直接エッジを持たないデータグラフ上のランダムウォーク手法によって同定されたシーケンスに基づいて、提案したDERWENTモデルは、類似した配列内の隣接データポイントを強制し、エンディングデータポイントを同じシーケンス内の他のデータポイントに表現させ、ソースデータの重み付きトレーニング損失を考慮する。
いくつかのベンチマークデータセットに関する実証研究は、提案したDERWENTアルゴリズムが最先端の性能をもたらすことを示した。
関連論文リスト
- Contrastive Representation for Data Filtering in Cross-Domain Offline Reinforcement Learning [46.08671291758573]
クロスドメインオフライン強化学習は、ターゲットドメインのデータ要求を軽減するために、さまざまなトランジションダイナミクスを備えたソースドメインデータを活用する。
既存の手法は、ペア化されたドメインの転送可能性の仮定に依存しながら、ドメイン分類器を介してダイナミックスギャップを測定することでこの問題に対処する。
本稿では,異なる領域からの遷移をサンプリングすることで,対照的な目的によって表現が学習される領域ギャップを測定するための新しい表現ベースアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-10T02:21:42Z) - Direct Distillation between Different Domains [97.39470334253163]
異なるドメイン間の直接蒸留(4Ds)と呼ばれる新しいワンステージ手法を提案する。
まず、Fourier変換に基づいて学習可能なアダプタを設計し、ドメイン固有の知識からドメイン不変知識を分離する。
次に、価値あるドメイン不変知識を学生ネットワークに転送するための融合活性化機構を構築する。
論文 参考訳(メタデータ) (2024-01-12T02:48:51Z) - Transfer RL via the Undo Maps Formalism [29.798971172941627]
ドメイン間で知識を伝達することは、機械学習における最も基本的な問題の1つである。
本稿では,対話型ドメイン間で知識を伝達するフレームワークTvDを提案する。
この目的が,模倣学習を想起させるポリシー更新スキームに結びつき,それを実装するための効率的なアルゴリズムを導出することを示す。
論文 参考訳(メタデータ) (2022-11-26T03:44:28Z) - Ranking Distance Calibration for Cross-Domain Few-Shot Learning [91.22458739205766]
数ショット学習の最近の進歩は、より現実的なクロスドメイン設定を促進する。
ドメインギャップとソースとターゲットデータセット間のラベル空間の相違により、共有される知識は極めて限られている。
我々は,タスク内の相互k-アネレスト近傍を発見することで,目標距離行列の校正を行う。
論文 参考訳(メタデータ) (2021-12-01T03:36:58Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - Dual-Teacher++: Exploiting Intra-domain and Inter-domain Knowledge with
Reliable Transfer for Cardiac Segmentation [69.09432302497116]
最先端の半教師付きドメイン適応フレームワークである Dual-Teacher++ を提案する。
ソースドメイン(MRなど)からのクロスモダリティ優先度を探索するドメイン間教師モデルと、ラベルのないターゲットドメインの知識を調査するドメイン内教師モデルを含む、新しいデュアル教師モデルを設計する。
このようにして、学生モデルは信頼できる二重ドメイン知識を得て、ターゲットドメインデータのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2021-01-07T05:17:38Z) - Flexible deep transfer learning by separate feature embeddings and
manifold alignment [0.0]
オブジェクト認識は、業界と防衛において重要な存在である。
残念ながら、既存のラベル付きデータセットでトレーニングされたアルゴリズムは、データ分布が一致しないため、直接新しいデータに一般化しない。
本稿では,各領域の特徴抽出を個別に学習することで,この制限を克服する新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-22T19:24:44Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z) - Deep Adversarial Transition Learning using Cross-Grafted Generative
Stacks [3.756448228784421]
本稿では,ドメインギャップを埋める新たなDATL(Deep Adversarial transition Learning)フレームワークを提案する。
2つの領域に対して可変オートエンコーダ(VAE)を構築し、VAEのデコーダスタックをクロスグラフすることで双方向遷移を形成する。
生成敵対ネットワーク(GAN)は、対象ドメインデータをソースドメインの既知のラベル空間にマッピングするドメイン適応に使用される。
論文 参考訳(メタデータ) (2020-09-25T04:25:27Z) - Adversarial Bipartite Graph Learning for Video Domain Adaptation [50.68420708387015]
ドメイン適応技術は,異なる領域間のモデルを適応させることに重点を置いているが,ビデオ認識領域ではめったに研究されていない。
近年,映像のソースと対象映像の表現を統一するために,対角学習を活用する視覚領域適応はビデオにはあまり効果がない。
本稿では,ソースとターゲットの相互作用を直接モデル化するAdversarial Bipartite Graph (ABG)学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-31T03:48:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。