Defensive Approximation: Securing CNNs using Approximate Computing
- URL: http://arxiv.org/abs/2006.07700v3
- Date: Thu, 29 Jul 2021 08:52:10 GMT
- Title: Defensive Approximation: Securing CNNs using Approximate Computing
- Authors: Amira Guesmi, Ihsen Alouani, Khaled Khasawneh, Mouna Baklouti, Tarek
Frikha, Mohamed Abid, Nael Abu-Ghazaleh
- Abstract summary: We show that our approximate computing implementation achieves robustness across a wide range of attack scenarios.
Our model maintains the same level in terms of classification accuracy, does not require retraining, and reduces resource utilization and energy consumption.
- Score: 2.29450472676752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past few years, an increasing number of machine-learning and deep
learning structures, such as Convolutional Neural Networks (CNNs), have been
applied to solving a wide range of real-life problems. However, these
architectures are vulnerable to adversarial attacks. In this paper, we propose
for the first time to use hardware-supported approximate computing to improve
the robustness of machine learning classifiers. We show that our approximate
computing implementation achieves robustness across a wide range of attack
scenarios. Specifically, for black-box and grey-box attack scenarios, we show
that successful adversarial attacks against the exact classifier have poor
transferability to the approximate implementation. Surprisingly, the robustness
advantages also apply to white-box attacks where the attacker has access to the
internal implementation of the approximate classifier. We explain some of the
possible reasons for this robustness through analysis of the internal operation
of the approximate implementation. Furthermore, our approximate computing model
maintains the same level in terms of classification accuracy, does not require
retraining, and reduces resource utilization and energy consumption of the CNN.
We conducted extensive experiments on a set of strong adversarial attacks; We
empirically show that the proposed implementation increases the robustness of a
LeNet-5 and an Alexnet CNNs by up to 99% and 87%, respectively for strong
grey-box adversarial attacks along with up to 67% saving in energy consumption
due to the simpler nature of the approximate logic. We also show that a
white-box attack requires a remarkably higher noise budget to fool the
approximate classifier, causing an average of 4db degradation of the PSNR of
the input image relative to the images that succeed in fooling the exact
classifier
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Sparse and Transferable Universal Singular Vectors Attack [5.498495800909073]
We propose a novel sparse universal white-box adversarial attack.
Our approach is based on truncated power providing sparsity to $(p,q)$-singular vectors of the hidden layers of Jacobian matrices.
Our findings demonstrate the vulnerability of state-of-the-art models to sparse attacks and highlight the importance of developing robust machine learning systems.
arXiv Detail & Related papers (2024-01-25T09:21:29Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Robust Structured Declarative Classifiers for 3D Point Clouds: Defending
Adversarial Attacks with Implicit Gradients [27.738181762952006]
Current defenders often learn to denoise the adversarial point clouds by reconstruction, and then feed them to the adversarials as input.
We propose a family of robust structured declaratives for point cloud classification, where the internal constrained optimization mechanism can effectively defend adversarial attacks.
We demonstrate state-of-the-art point cloud classification performance on ModelNet40 and ScanNet under seven different attackers.
arXiv Detail & Related papers (2022-03-29T05:35:51Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
In particular, our layer generates an input perturbation in the opposite direction of the adversarial one.
We verify the effectiveness of our approach by combining our layer with both nominally and robustly trained models.
Our anti-adversary layer significantly enhances model robustness while coming at no cost on clean accuracy.
arXiv Detail & Related papers (2021-03-26T09:36:59Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - Defence against adversarial attacks using classical and quantum-enhanced
Boltzmann machines [64.62510681492994]
generative models attempt to learn the distribution underlying a dataset, making them inherently more robust to small perturbations.
We find improvements ranging from 5% to 72% against attacks with Boltzmann machines on the MNIST dataset.
arXiv Detail & Related papers (2020-12-21T19:00:03Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
We propose a Neural Process based black-box adversarial attack (NP-Attack)
NP-Attack could greatly decrease the query counts under the black-box setting.
arXiv Detail & Related papers (2020-09-24T06:22:56Z) - On the Intrinsic Robustness of NVM Crossbars Against Adversarial Attacks [6.592909460916497]
We show that the non-ideal behavior of analog computing lowers the effectiveness of adversarial attacks.
In a non-adaptive attack, where the attacker is unaware of the analog hardware, we observe that analog computing offers a varying degree of intrinsic robustness.
arXiv Detail & Related papers (2020-08-27T09:36:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.