Defence against adversarial attacks using classical and quantum-enhanced
Boltzmann machines
- URL: http://arxiv.org/abs/2012.11619v1
- Date: Mon, 21 Dec 2020 19:00:03 GMT
- Title: Defence against adversarial attacks using classical and quantum-enhanced
Boltzmann machines
- Authors: Aidan Kehoe, Peter Wittek, Yanbo Xue, Alejandro Pozas-Kerstjens
- Abstract summary: generative models attempt to learn the distribution underlying a dataset, making them inherently more robust to small perturbations.
We find improvements ranging from 5% to 72% against attacks with Boltzmann machines on the MNIST dataset.
- Score: 64.62510681492994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a robust defence to adversarial attacks on discriminative
algorithms. Neural networks are naturally vulnerable to small, tailored
perturbations in the input data that lead to wrong predictions. On the
contrary, generative models attempt to learn the distribution underlying a
dataset, making them inherently more robust to small perturbations. We use
Boltzmann machines for discrimination purposes as attack-resistant classifiers,
and compare them against standard state-of-the-art adversarial defences. We
find improvements ranging from 5% to 72% against attacks with Boltzmann
machines on the MNIST dataset. We furthermore complement the training with
quantum-enhanced sampling from the D-Wave 2000Q annealer, finding results
comparable with classical techniques and with marginal improvements in some
cases. These results underline the relevance of probabilistic methods in
constructing neural networks and demonstrate the power of quantum computers,
even with limited hardware capabilities. This work is dedicated to the memory
of Peter Wittek.
Related papers
- Sparse and Transferable Universal Singular Vectors Attack [5.498495800909073]
We propose a novel sparse universal white-box adversarial attack.
Our approach is based on truncated power providing sparsity to $(p,q)$-singular vectors of the hidden layers of Jacobian matrices.
Our findings demonstrate the vulnerability of state-of-the-art models to sparse attacks and highlight the importance of developing robust machine learning systems.
arXiv Detail & Related papers (2024-01-25T09:21:29Z) - Exploring the Vulnerabilities of Machine Learning and Quantum Machine
Learning to Adversarial Attacks using a Malware Dataset: A Comparative
Analysis [0.0]
Machine learning (ML) and quantum machine learning (QML) have shown remarkable potential in tackling complex problems.
Their susceptibility to adversarial attacks raises concerns when deploying these systems in security sensitive applications.
We present a comparative analysis of the vulnerability of ML and QNN models to adversarial attacks using a malware dataset.
arXiv Detail & Related papers (2023-05-31T06:31:42Z) - DODEM: DOuble DEfense Mechanism Against Adversarial Attacks Towards
Secure Industrial Internet of Things Analytics [8.697883716452385]
We propose a double defense mechanism to detect and mitigate adversarial attacks in I-IoT environments.
We first detect if there is an adversarial attack on a given sample using novelty detection algorithms.
If there is an attack, adversarial retraining provides a more robust model, while we apply standard training for regular samples.
arXiv Detail & Related papers (2023-01-23T22:10:40Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
Adversarial training (AT) is considered to be one of the most reliable defenses against adversarial attacks.
Recent works show generalization improvement with adversarial samples under novel threat models.
We propose a novel threat model called Joint Space Threat Model (JSTM)
Under JSTM, we develop novel adversarial attacks and defenses.
arXiv Detail & Related papers (2021-12-12T21:08:14Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN) models have vulnerabilities related to security concerns.
Data poisoning-enabled perturbation attacks are complex adversarial ones that inject false data into models.
We propose an attack-agnostic-based defense method for mitigating their influence.
arXiv Detail & Related papers (2020-12-08T21:25:44Z) - Omni: Automated Ensemble with Unexpected Models against Adversarial
Evasion Attack [35.0689225703137]
A machine learning-based security detection model is susceptible to adversarial evasion attacks.
We propose an approach called Omni to explore methods that create an ensemble of "unexpected models"
In studies with five types of adversarial evasion attacks, we show Omni is a promising approach as a defense strategy.
arXiv Detail & Related papers (2020-11-23T20:02:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.