Proximal Mapping for Deep Regularization
- URL: http://arxiv.org/abs/2006.07822v1
- Date: Sun, 14 Jun 2020 07:04:14 GMT
- Title: Proximal Mapping for Deep Regularization
- Authors: Mao Li, Yingyi Ma, Xinhua Zhang
- Abstract summary: Underpinning the success of deep learning is effective regularizations that allow a variety of priors in data to be modeled.
We propose inserting proximal mapping as a new layer to the deep network, which directly and explicitly produces well regularized hidden layer outputs.
The resulting technique is shown well connected to kernel warping and dropout, and novel algorithms were developed for robust temporal learning and multiview modeling.
- Score: 15.48377586806766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underpinning the success of deep learning is effective regularizations that
allow a variety of priors in data to be modeled. For example, robustness to
adversarial perturbations, and correlations between multiple modalities.
However, most regularizers are specified in terms of hidden layer outputs,
which are not themselves optimization variables. In contrast to prevalent
methods that optimize them indirectly through model weights, we propose
inserting proximal mapping as a new layer to the deep network, which directly
and explicitly produces well regularized hidden layer outputs. The resulting
technique is shown well connected to kernel warping and dropout, and novel
algorithms were developed for robust temporal learning and multiview modeling,
both outperforming state-of-the-art methods.
Related papers
- Policy Gradient-Driven Noise Mask [3.69758875412828]
We propose a novel pretraining pipeline that learns to generate conditional noise masks specifically tailored to improve performance on multi-modal and multi-organ datasets.
A key aspect is that the policy network's role is limited to obtaining an intermediate (or heated) model before fine-tuning.
Results demonstrate that fine-tuning the intermediate models consistently outperforms conventional training algorithms on both classification and generalization to unseen concept tasks.
arXiv Detail & Related papers (2024-04-29T23:53:42Z) - On the Versatile Uses of Partial Distance Correlation in Deep Learning [47.11577420740119]
This paper revisits a (less widely known) from statistics, called distance correlation (and its partial variant), designed to evaluate correlation between feature spaces of different dimensions.
We describe the steps necessary to carry out its deployment for large scale models.
This opens the door to a surprising array of applications ranging from conditioning one deep model w.r.t. another, learning disentangled representations as well as optimizing diverse models that would directly be more robust to adversarial attacks.
arXiv Detail & Related papers (2022-07-20T06:36:11Z) - Sequential Bayesian Neural Subnetwork Ensembles [4.6354120722975125]
We propose an approach for sequential ensembling of dynamic Bayesian neuralworks that consistently maintains reduced model complexity throughout the training process.
Our proposed approach outperforms traditional dense and sparse deterministic and Bayesian ensemble models in terms of prediction accuracy, uncertainty estimation, out-of-distribution detection, and adversarial robustness.
arXiv Detail & Related papers (2022-06-01T22:57:52Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
We propose a novel unsupervised learning approach to 3D shape correspondence.
We show that the proposed method significantly improves over the state-of-the-art on multiple datasets.
arXiv Detail & Related papers (2020-10-28T22:24:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.