Layer Separation Deep Learning Model with Auxiliary Variables for Partial Differential Equations
- URL: http://arxiv.org/abs/2507.12766v1
- Date: Thu, 17 Jul 2025 03:43:18 GMT
- Title: Layer Separation Deep Learning Model with Auxiliary Variables for Partial Differential Equations
- Authors: Yaru Liu, Yiqi Gu,
- Abstract summary: We propose a new framework, the layer separation (LySep) model, to improve the deep learning-based methods in partial equations.<n>We provide theoretical analyses demonstrating the advantages of LySep in minimizing loss and reducing solution error.
- Score: 0.6215404942415159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a new optimization framework, the layer separation (LySep) model, to improve the deep learning-based methods in solving partial differential equations. Due to the highly non-convex nature of the loss function in deep learning, existing optimization algorithms often converge to suboptimal local minima or suffer from gradient explosion or vanishing, resulting in poor performance. To address these issues, we introduce auxiliary variables to separate the layers of deep neural networks. Specifically, the output and its derivatives of each layer are represented by auxiliary variables, effectively decomposing the deep architecture into a series of shallow architectures. New loss functions with auxiliary variables are established, in which only variables from two neighboring layers are coupled. Corresponding algorithms based on alternating directions are developed, where many variables can be updated optimally in closed forms. Moreover, we provide theoretical analyses demonstrating the consistency between the LySep model and the original deep model. High-dimensional numerical results validate our theory and demonstrate the advantages of LySep in minimizing loss and reducing solution error.
Related papers
- Deep Learning Optimization Using Self-Adaptive Weighted Auxiliary Variables [20.09691024284159]
In this paper, we develop a new framework for learning via neural networks or physics-informed networks.<n>The robustness of our framework guarantees that the new loss helps optimize the original problem.
arXiv Detail & Related papers (2025-04-30T10:43:13Z) - Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
Averaging neural network parameters is an intuitive method for the knowledge of two independent models.
It is most prominently used in federated learning.
We analyse the performance of the models that result from averaging single, or groups.
arXiv Detail & Related papers (2023-07-13T09:39:10Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - A consistent and flexible framework for deep matrix factorizations [17.49766938060264]
We introduce two meaningful loss functions for deep MF and present a generic framework to solve the corresponding optimization problems.
The models are successfully applied on both synthetic and real data, namely for hyperspectral unmixing and extraction of facial features.
arXiv Detail & Related papers (2022-06-21T19:20:35Z) - Efficient differentiable quadratic programming layers: an ADMM approach [0.0]
We present an alternative network layer architecture based on the alternating direction method of multipliers (ADMM)
Backward differentiation is performed by implicit differentiation of the residual map of a modified fixed-point iteration.
Simulated results demonstrate the computational advantage of the ADMM layer, which for medium scaled problems is approximately an order of magnitude faster than the OptNet quadratic programming layer.
arXiv Detail & Related papers (2021-12-14T15:25:07Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
We present a generic strategy to efficiently approximate any-order directional derivative with finite difference.
Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations.
arXiv Detail & Related papers (2020-07-07T10:05:01Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.