Adversarial Attacks and Detection on Reinforcement Learning-Based
Interactive Recommender Systems
- URL: http://arxiv.org/abs/2006.07934v1
- Date: Sun, 14 Jun 2020 15:41:47 GMT
- Title: Adversarial Attacks and Detection on Reinforcement Learning-Based
Interactive Recommender Systems
- Authors: Yuanjiang Cao, Xiaocong Chen, Lina Yao, Xianzhi Wang and Wei Emma
Zhang
- Abstract summary: Adversarial attacks pose significant challenges for detecting them at an early stage.
We propose attack-agnostic detection on reinforcement learning-based interactive recommendation systems.
We first craft adversarial examples to show their diverse distributions and then augment recommendation systems by detecting potential attacks.
- Score: 47.70973322193384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks pose significant challenges for detecting adversarial
attacks at an early stage. We propose attack-agnostic detection on
reinforcement learning-based interactive recommendation systems. We first craft
adversarial examples to show their diverse distributions and then augment
recommendation systems by detecting potential attacks with a deep
learning-based classifier based on the crafted data. Finally, we study the
attack strength and frequency of adversarial examples and evaluate our model on
standard datasets with multiple crafting methods. Our extensive experiments
show that most adversarial attacks are effective, and both attack strength and
attack frequency impact the attack performance. The strategically-timed attack
achieves comparative attack performance with only 1/3 to 1/2 attack frequency.
Besides, our black-box detector trained with one crafting method has the
generalization ability over several crafting methods.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - MIXPGD: Hybrid Adversarial Training for Speech Recognition Systems [18.01556863687433]
We propose mixPGD adversarial training method to improve robustness of the model for ASR systems.
In standard adversarial training, adversarial samples are generated by leveraging supervised or unsupervised methods.
We merge the capabilities of both supervised and unsupervised approaches in our method to generate new adversarial samples which aid in improving model robustness.
arXiv Detail & Related papers (2023-03-10T07:52:28Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
Human Activity Recognition (HAR) has been employed in a wide range of applications, e.g. self-driving cars.
Recently, the robustness of skeleton-based HAR methods have been questioned due to their vulnerability to adversarial attacks.
We show such threats exist, even when the attacker only has access to the input/output of the model.
We propose the very first black-box adversarial attack approach in skeleton-based HAR called BASAR.
arXiv Detail & Related papers (2022-11-21T09:51:28Z) - The Space of Adversarial Strategies [6.295859509997257]
Adversarial examples, inputs designed to induce worst-case behavior in machine learning models, have been extensively studied over the past decade.
We propose a systematic approach to characterize worst-case (i.e., optimal) adversaries.
arXiv Detail & Related papers (2022-09-09T20:53:11Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
We propose TREATED, a universal adversarial detection method that can defend against attacks of various perturbation levels without making any assumptions.
Extensive experiments on three competitive neural networks and two widely used datasets show that our method achieves better detection performance than baselines.
arXiv Detail & Related papers (2021-09-13T03:31:20Z) - Learning to Detect Adversarial Examples Based on Class Scores [0.8411385346896413]
We take a closer look at adversarial attack detection based on the class scores of an already trained classification model.
We propose to train a support vector machine (SVM) on the class scores to detect adversarial examples.
We show that our approach yields an improved detection rate compared to an existing method, whilst being easy to implement.
arXiv Detail & Related papers (2021-07-09T13:29:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.