Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness
- URL: http://arxiv.org/abs/2110.08256v1
- Date: Wed, 13 Oct 2021 13:54:24 GMT
- Title: Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness
- Authors: Xiao Yang, Yinpeng Dong, Wenzhao Xiang, Tianyu Pang, Hang Su, Jun Zhu
- Abstract summary: We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
- Score: 53.094682754683255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vulnerability of deep neural networks to adversarial examples has
motivated an increasing number of defense strategies for promoting model
robustness. However, the progress is usually hampered by insufficient
robustness evaluations. As the de facto standard to evaluate adversarial
robustness, adversarial attacks typically solve an optimization problem of
crafting adversarial examples with an iterative process. In this work, we
propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger
attack algorithms automatically. Our method learns the optimizer in adversarial
attacks parameterized by a recurrent neural network, which is trained over a
class of data samples and defenses to produce effective update directions
during adversarial example generation. Furthermore, we develop a model-agnostic
training algorithm to improve the generalization ability of the learned
optimizer when attacking unseen defenses. Our approach can be flexibly
incorporated with various attacks and consistently improves the performance
with little extra computational cost. Extensive experiments demonstrate the
effectiveness of the learned attacks by MAMA compared to the state-of-the-art
attacks on different defenses, leading to a more reliable evaluation of
adversarial robustness.
Related papers
- Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks [0.0]
Adversarial attacks pose significant threats to the robustness of deep learning models in image classification.
This paper explores and refines defense mechanisms against these attacks to enhance the resilience of neural networks.
arXiv Detail & Related papers (2024-08-20T02:00:02Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
adversarial examples pose a threat to deep neural networks' applications.
Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns.
We propose a similar targeted attack method named Similar Target(ST)
arXiv Detail & Related papers (2023-08-21T14:16:36Z) - MIXPGD: Hybrid Adversarial Training for Speech Recognition Systems [18.01556863687433]
We propose mixPGD adversarial training method to improve robustness of the model for ASR systems.
In standard adversarial training, adversarial samples are generated by leveraging supervised or unsupervised methods.
We merge the capabilities of both supervised and unsupervised approaches in our method to generate new adversarial samples which aid in improving model robustness.
arXiv Detail & Related papers (2023-03-10T07:52:28Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - A Multi-objective Memetic Algorithm for Auto Adversarial Attack
Optimization Design [1.9100854225243937]
Well-designed adversarial defense strategies can improve the robustness of deep learning models against adversarial examples.
Given the defensed model, the efficient adversarial attack with less computational burden and lower robust accuracy is needed to be further exploited.
We propose a multi-objective memetic algorithm for auto adversarial attack optimization design, which realizes the automatical search for the near-optimal adversarial attack towards defensed models.
arXiv Detail & Related papers (2022-08-15T03:03:05Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
Adversarial attacks can be an important method to evaluate and select robust models in safety-critical applications.
We propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improve the transferability of adversarial examples.
Our method has higher success rates than state-of-the-art gradient-based attack methods.
arXiv Detail & Related papers (2021-02-07T06:00:36Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.