論文の概要: Exponential Tilting of Generative Models: Improving Sample Quality by
Training and Sampling from Latent Energy
- arxiv url: http://arxiv.org/abs/2006.08100v1
- Date: Mon, 15 Jun 2020 02:58:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 02:48:38.253867
- Title: Exponential Tilting of Generative Models: Improving Sample Quality by
Training and Sampling from Latent Energy
- Title(参考訳): 生成モデルの指数的ティルティング:遅延エネルギーからのトレーニングとサンプリングによるサンプル品質の向上
- Authors: Zhisheng Xiao, Qing Yan, Yali Amit
- Abstract要約: 本手法は,事前学習した生成モデルにより生成した標本上でエネルギー関数を生成する潜在変数空間上のエネルギー関数を構築する。
提案手法を用いることで,一般的な確率に基づく生成モデルのサンプル品質を大幅に向上できることを示す。
- 参考スコア(独自算出の注目度): 6.767885381740952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a general method that can improve the sample
quality of pre-trained likelihood based generative models. Our method
constructs an energy function on the latent variable space that yields an
energy function on samples produced by the pre-trained generative model. The
energy based model is efficiently trained by maximizing the data likelihood,
and after training, new samples in the latent space are generated from the
energy based model and passed through the generator to producing samples in
observation space. We show that using our proposed method, we can greatly
improve the sample quality of popular likelihood based generative models, such
as normalizing flows and VAEs, with very little computational overhead.
- Abstract(参考訳): 本稿では,事前学習された確率ベース生成モデルのサンプル品質を向上できる汎用的手法を提案する。
本手法は,事前学習した生成モデルにより生成した試料に対してエネルギー関数を生成する潜在変数空間上のエネルギー関数を構築する。
エネルギーベースモデルをデータ可能性の最大化により効率よく訓練し、トレーニング後、エネルギーベースモデルから潜伏空間の新しいサンプルを生成し、発電機を通過して観測空間内でサンプルを生成する。
提案手法を用いることで,フローの正規化やVAEなどの一般的な確率ベース生成モデルのサンプル品質を,計算オーバーヘッドが少なく,大幅に向上できることを示す。
関連論文リスト
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - STANLEY: Stochastic Gradient Anisotropic Langevin Dynamics for Learning
Energy-Based Models [41.031470884141775]
エネルギーベースモデル(EBM)のためのエンドツーエンド学習アルゴリズムを提案する。
本稿では、異方性段差と勾配インフォームド共分散行列に基づく新しい高次元サンプリング法を提案する。
提案手法,すなわちSTANLEYは,新しいMCMC法を用いてエネルギーベースモデルを学習するための最適化アルゴリズムである。
論文 参考訳(メタデータ) (2023-10-19T11:55:16Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
高次元データに基づくエネルギーベースモデル(EBM)の訓練は、困難かつ時間を要する可能性がある。
EBMと、GANや拡散モデルのような他の生成フレームワークとの間には、サンプル品質に顕著なギャップがある。
本研究では,協調拡散回復可能性 (CDRL) を提案する。
論文 参考訳(メタデータ) (2023-09-10T22:05:24Z) - Balanced Training of Energy-Based Models with Adaptive Flow Sampling [13.951904929884618]
エネルギーベースモデル (EBMs) は、非正規化ログ密度を直接パラメータ化する汎用密度推定モデルである。
我々は、異なる種類の生成モデル、正規化フロー(NF)を用いたESMのための新しい最大可能性トレーニングアルゴリズムを提案する。
本手法はトレーニング中にNFをEMMに適合させ,NF支援サンプリング方式によりESMの正確な勾配が常に得られるようにする。
論文 参考訳(メタデータ) (2023-06-01T13:58:06Z) - Energy-Based Test Sample Adaptation for Domain Generalization [81.04943285281072]
そこで本研究では,ドメインの試験時間におけるエネルギーに基づくサンプル適応を提案する。
対象試料をソース分布に適応させるため,エネルギー最小化により反復的に試料を更新する。
画像とマイクロブログスレッドの分類のための6つのベンチマーク実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-22T08:55:09Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - Particle Dynamics for Learning EBMs [83.59335980576637]
エネルギーベースモデリングは教師なし学習への有望なアプローチであり、単一のモデルから多くの下流アプリケーションを生み出す。
コントラスト的アプローチ(contrastive approach)"でエネルギーベースモデルを学習する際の主な困難は、各イテレーションで現在のエネルギー関数からサンプルを生成することである。
本稿では,これらのサンプルを取得し,現行モデルからの粗大なMCMCサンプリングを回避するための代替手法を提案する。
論文 参考訳(メタデータ) (2021-11-26T23:41:07Z) - Controllable and Compositional Generation with Latent-Space Energy-Based
Models [60.87740144816278]
制御可能な生成は、現実世界のアプリケーションで深層生成モデルの採用を成功させる上で重要な要件の1つである。
本研究では, エネルギーモデル(EBM)を用いて, 属性の集合上での合成生成を扱う。
エネルギー関数を論理演算子と合成することにより、分解能1024x1024のフォトリアリスティック画像を生成する際に、このような構成性を実現するのはこれが初めてである。
論文 参考訳(メタデータ) (2021-10-21T03:31:45Z) - Instance Selection for GANs [25.196177369030146]
GAN(Generative Adversarial Networks)は、高品質な合成画像を生成するために広く採用されている。
GANはしばしばデータ多様体の外にある非現実的なサンプルを生成する。
本稿では,サンプルの品質向上のための新しいアプローチを提案する。モデルトレーニングが行われる前に,インスタンス選択によるトレーニングデータセットの変更を行う。
論文 参考訳(メタデータ) (2020-07-30T06:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。