Neural gradients are near-lognormal: improved quantized and sparse
training
- URL: http://arxiv.org/abs/2006.08173v3
- Date: Mon, 12 Oct 2020 14:18:25 GMT
- Title: Neural gradients are near-lognormal: improved quantized and sparse
training
- Authors: Brian Chmiel, Liad Ben-Uri, Moran Shkolnik, Elad Hoffer, Ron Banner,
Daniel Soudry
- Abstract summary: We find that the distribution of neural gradients is approximately lognormal.
We suggest two closed-form analytical methods to reduce the computational and memory burdens of neural gradients.
To the best of our knowledge, this paper is the first to (1) quantize the gradients to 6-bit floating-point formats, or (2) achieve up to 85% gradient sparsity -- in each case without accuracy.
- Score: 35.28451407313548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While training can mostly be accelerated by reducing the time needed to
propagate neural gradients back throughout the model, most previous works focus
on the quantization/pruning of weights and activations. These methods are often
not applicable to neural gradients, which have very different statistical
properties. Distinguished from weights and activations, we find that the
distribution of neural gradients is approximately lognormal. Considering this,
we suggest two closed-form analytical methods to reduce the computational and
memory burdens of neural gradients. The first method optimizes the
floating-point format and scale of the gradients. The second method accurately
sets sparsity thresholds for gradient pruning. Each method achieves
state-of-the-art results on ImageNet. To the best of our knowledge, this paper
is the first to (1) quantize the gradients to 6-bit floating-point formats, or
(2) achieve up to 85% gradient sparsity -- in each case without accuracy
degradation. Reference implementation accompanies the paper.
Related papers
- How to guess a gradient [68.98681202222664]
We show that gradients are more structured than previously thought.
Exploiting this structure can significantly improve gradient-free optimization schemes.
We highlight new challenges in overcoming the large gap between optimizing with exact gradients and guessing the gradients.
arXiv Detail & Related papers (2023-12-07T21:40:44Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - On Training Implicit Models [75.20173180996501]
We propose a novel gradient estimate for implicit models, named phantom gradient, that forgoes the costly computation of the exact gradient.
Experiments on large-scale tasks demonstrate that these lightweight phantom gradients significantly accelerate the backward passes in training implicit models by roughly 1.7 times.
arXiv Detail & Related papers (2021-11-09T14:40:24Z) - Continuous vs. Discrete Optimization of Deep Neural Networks [15.508460240818575]
We show that over deep neural networks with homogeneous activations, gradient flow trajectories enjoy favorable curvature.
This finding allows us to translate an analysis of gradient flow over deep linear neural networks into a guarantee that gradient descent efficiently converges to global minimum.
We hypothesize that the theory of gradient flows will be central to unraveling mysteries behind deep learning.
arXiv Detail & Related papers (2021-07-14T10:59:57Z) - Adapting Stepsizes by Momentumized Gradients Improves Optimization and
Generalization [89.66571637204012]
textscAdaMomentum on vision, and achieves state-the-art results consistently on other tasks including language processing.
textscAdaMomentum on vision, and achieves state-the-art results consistently on other tasks including language processing.
textscAdaMomentum on vision, and achieves state-the-art results consistently on other tasks including language processing.
arXiv Detail & Related papers (2021-06-22T03:13:23Z) - Decreasing scaling transition from adaptive gradient descent to
stochastic gradient descent [1.7874193862154875]
We propose a decreasing scaling transition from adaptive gradient descent to gradient descent method DSTAda.
Our experimental results show that DSTAda has a faster speed, higher accuracy, and better stability and robustness.
arXiv Detail & Related papers (2021-06-12T11:28:58Z) - Reparametrizing gradient descent [0.0]
We propose an optimization algorithm which we call norm-adapted gradient descent.
Our algorithm can also be compared to quasi-Newton methods, but we seek roots rather than stationary points.
arXiv Detail & Related papers (2020-10-09T20:22:29Z) - Channel-Directed Gradients for Optimization of Convolutional Neural
Networks [50.34913837546743]
We introduce optimization methods for convolutional neural networks that can be used to improve existing gradient-based optimization in terms of generalization error.
We show that defining the gradients along the output channel direction leads to a performance boost, while other directions can be detrimental.
arXiv Detail & Related papers (2020-08-25T00:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.