Channel-Directed Gradients for Optimization of Convolutional Neural
Networks
- URL: http://arxiv.org/abs/2008.10766v1
- Date: Tue, 25 Aug 2020 00:44:09 GMT
- Title: Channel-Directed Gradients for Optimization of Convolutional Neural
Networks
- Authors: Dong Lao, Peihao Zhu, Peter Wonka, Ganesh Sundaramoorthi
- Abstract summary: We introduce optimization methods for convolutional neural networks that can be used to improve existing gradient-based optimization in terms of generalization error.
We show that defining the gradients along the output channel direction leads to a performance boost, while other directions can be detrimental.
- Score: 50.34913837546743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce optimization methods for convolutional neural networks that can
be used to improve existing gradient-based optimization in terms of
generalization error. The method requires only simple processing of existing
stochastic gradients, can be used in conjunction with any optimizer, and has
only a linear overhead (in the number of parameters) compared to computation of
the stochastic gradient. The method works by computing the gradient of the loss
function with respect to output-channel directed re-weighted L2 or Sobolev
metrics, which has the effect of smoothing components of the gradient across a
certain direction of the parameter tensor. We show that defining the gradients
along the output channel direction leads to a performance boost, while other
directions can be detrimental. We present the continuum theory of such
gradients, its discretization, and application to deep networks. Experiments on
benchmark datasets, several networks and baseline optimizers show that
optimizers can be improved in generalization error by simply computing the
stochastic gradient with respect to output-channel directed metrics.
Related papers
- Beyond Backpropagation: Optimization with Multi-Tangent Forward Gradients [0.08388591755871733]
Forward gradients are an approach to approximate the gradients from directional derivatives along random tangents computed by forward-mode automatic differentiation.
This paper provides an in-depth analysis of multi-tangent forward gradients and introduces an improved approach to combining the forward gradients from multiple tangents based on projections.
arXiv Detail & Related papers (2024-10-23T11:02:59Z) - Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - Gradients without Backpropagation [16.928279365071916]
We present a method to compute gradients based solely on the directional derivative that one can compute exactly and efficiently via the forward mode.
We demonstrate forward descent gradient in a range of problems, showing substantial savings in computation and enabling training up to twice as fast in some cases.
arXiv Detail & Related papers (2022-02-17T11:07:55Z) - Penalizing Gradient Norm for Efficiently Improving Generalization in
Deep Learning [13.937644559223548]
How to train deep neural networks (DNNs) to generalize well is a central concern in deep learning.
We propose an effective method to improve the model generalization by penalizing the gradient norm of loss function during optimization.
arXiv Detail & Related papers (2022-02-08T02:03:45Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Reparametrizing gradient descent [0.0]
We propose an optimization algorithm which we call norm-adapted gradient descent.
Our algorithm can also be compared to quasi-Newton methods, but we seek roots rather than stationary points.
arXiv Detail & Related papers (2020-10-09T20:22:29Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.