Computing Large-Scale Matrix and Tensor Decomposition with Structured
Factors: A Unified Nonconvex Optimization Perspective
- URL: http://arxiv.org/abs/2006.08183v2
- Date: Wed, 5 Aug 2020 20:31:41 GMT
- Title: Computing Large-Scale Matrix and Tensor Decomposition with Structured
Factors: A Unified Nonconvex Optimization Perspective
- Authors: Xiao Fu, Nico Vervliet, Lieven De Lathauwer, Kejun Huang, Nicolas
Gillis
- Abstract summary: This article aims at offering a comprehensive tutorial for the computational aspects of structured matrix and tensor factorization.
We start with general optimization theory that covers a wide range of factorization problems with diverse constraints.
Then, we go under the hood' to showcase specific algorithm design under these introduced principles.
- Score: 33.19643734230432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proposed article aims at offering a comprehensive tutorial for the
computational aspects of structured matrix and tensor factorization. Unlike
existing tutorials that mainly focus on {\it algorithmic procedures} for a
small set of problems, e.g., nonnegativity or sparsity-constrained
factorization, we take a {\it top-down} approach: we start with general
optimization theory (e.g., inexact and accelerated block coordinate descent,
stochastic optimization, and Gauss-Newton methods) that covers a wide range of
factorization problems with diverse constraints and regularization terms of
engineering interest. Then, we go `under the hood' to showcase specific
algorithm design under these introduced principles. We pay a particular
attention to recent algorithmic developments in structured tensor and matrix
factorization (e.g., random sketching and adaptive step size based stochastic
optimization and structure-exploiting second-order algorithms), which are the
state of the art---yet much less touched upon in the literature compared to
{\it block coordinate descent} (BCD)-based methods. We expect that the article
to have an educational values in the field of structured factorization and hope
to stimulate more research in this important and exciting direction.
Related papers
- Structured Regularization for Constrained Optimization on the SPD Manifold [1.1126342180866644]
We introduce a class of structured regularizers, based on symmetric gauge functions, which allow for solving constrained optimization on the SPD manifold with faster unconstrained methods.
We show that our structured regularizers can be chosen to preserve or induce desirable structure, in particular convexity and "difference of convex" structure.
arXiv Detail & Related papers (2024-10-12T22:11:22Z) - Structured Low-Rank Tensor Learning [2.1227526213206542]
We consider the problem of learning low-rank tensors from partial observations with structural constraints.
We propose a novel factorization of such tensors, which leads to a simpler optimization problem.
arXiv Detail & Related papers (2023-05-13T17:04:54Z) - Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints [9.301728976515255]
This article provides new practical and theoretical developments for the landing algorithm.
First, the method is extended to the Stiefel manifold.
We also consider variance reduction algorithms when the cost function is an average of many functions.
arXiv Detail & Related papers (2023-03-29T07:36:54Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
We show how a difference of Euclidean convexization functions can be written as a difference of different types of problems in statistics and machine learning.
Ultimately, we helps the broader broader the broader the broader the broader the work.
arXiv Detail & Related papers (2022-06-22T23:57:40Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Bilevel Optimization for Machine Learning: Algorithm Design and
Convergence Analysis [12.680169619392695]
This thesis provides a comprehensive convergence rate analysis for bilevel optimization algorithms.
For the problem-based formulation, we provide a convergence rate analysis for AID- and ITD-based bilevel algorithms.
We then develop acceleration bilevel algorithms, for which we provide shaper convergence analysis with relaxed assumptions.
arXiv Detail & Related papers (2021-07-31T22:05:47Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - First-Order Methods for Convex Optimization [2.578242050187029]
First-order methods have the potential to provide low accuracy solutions at low computational complexity.
We give complete proofs for various key results, and highlight the unifying aspects of several optimization algorithms.
arXiv Detail & Related papers (2021-01-04T13:03:38Z) - A General Framework for Consistent Structured Prediction with Implicit
Loss Embeddings [113.15416137912399]
We propose and analyze a novel theoretical and algorithmic framework for structured prediction.
We study a large class of loss functions that implicitly defines a suitable geometry on the problem.
When dealing with output spaces with infinite cardinality, a suitable implicit formulation of the estimator is shown to be crucial.
arXiv Detail & Related papers (2020-02-13T10:30:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.