論文の概要: Robust Variational Autoencoder for Tabular Data with Beta Divergence
- arxiv url: http://arxiv.org/abs/2006.08204v2
- Date: Tue, 16 Jun 2020 02:30:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 03:40:52.419161
- Title: Robust Variational Autoencoder for Tabular Data with Beta Divergence
- Title(参考訳): ベータ発散を伴う表データ用ロバスト変分オートエンコーダ
- Authors: Haleh Akrami, Sergul Aydore, Richard M. Leahy, Anand A. Joshi
- Abstract要約: 本稿では,連続的特徴と分類的特徴を混合した頑健な変動型オートエンコーダを提案する。
ネットワークトラフィックデータセットの異常検出アプリケーションについて,本手法の有効性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a robust variational autoencoder with $\beta$ divergence for
tabular data (RTVAE) with mixed categorical and continuous features.
Variational autoencoders (VAE) and their variations are popular frameworks for
anomaly detection problems. The primary assumption is that we can learn
representations for normal patterns via VAEs and any deviation from that can
indicate anomalies. However, the training data itself can contain outliers. The
source of outliers in training data include the data collection process itself
(random noise) or a malicious attacker (data poisoning) who may target to
degrade the performance of the machine learning model. In either case, these
outliers can disproportionately affect the training process of VAEs and may
lead to wrong conclusions about what the normal behavior is. In this work, we
derive a novel form of a variational autoencoder for tabular data sets with
categorical and continuous features that is robust to outliers in training
data. Our results on the anomaly detection application for network traffic
datasets demonstrate the effectiveness of our approach.
- Abstract(参考訳): 本稿では,表型データ(RTVAE)に対して$\beta$のばらつきを持つロバストな変分オートエンコーダを提案する。
変分オートエンコーダ(VAE)とその変分は異常検出問題に対する一般的なフレームワークである。
第一の前提は、VAEを通して正規パターンの表現を学習し、そこから逸脱して異常を示すことができるということである。
しかし、トレーニングデータ自体が外れ値を含むことができる。
トレーニングデータの異常発生源には、データ収集プロセス自体(ランダムノイズ)や、機械学習モデルのパフォーマンスを低下させる可能性のある悪意のある攻撃者(データ中毒)が含まれる。
いずれの場合も、これらの異常値はVAEのトレーニングプロセスに不均等に影響を与え、通常の行動が何かという誤った結論につながる可能性がある。
本研究は,学習データにおける外れ値に頑健な分類的かつ連続的な特徴を持つ表型データセットのための変分オートエンコーダの新たな形式を導出する。
ネットワークトラフィックデータセットの異常検出アプリケーションについて,本手法の有効性を実証した。
関連論文リスト
- Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Leveraging variational autoencoders for multiple data imputation [0.5156484100374059]
本稿では,複数の計算手法を用いて,データ欠落を考慮に入れた深部モデル,すなわち変分オートエンコーダ(VAE)について検討する。
VAEは、過小評価と過信な計算によって、欠落したデータの経験的カバレッジを低くすることがわかった。
これを克服するために、一般化されたベイズフレームワークから見た$beta$-VAEsを用いて、モデルの誤特定に対して堅牢性を提供する。
論文 参考訳(メタデータ) (2022-09-30T08:58:43Z) - Positive Difference Distribution for Image Outlier Detection using
Normalizing Flows and Contrastive Data [2.9005223064604078]
例えば、標準的なログライクリーフトレーニングによる正規化フローは、外れ値スコアとして不十分である。
本稿では,外乱検出のための非ラベル付き補助データセットと確率的外乱スコアを提案する。
これは、分布内と対照的な特徴密度の間の正規化正の差を学ぶことと等価であることを示す。
論文 参考訳(メタデータ) (2022-08-30T07:00:46Z) - Certifying Data-Bias Robustness in Linear Regression [12.00314910031517]
本稿では, 線形回帰モデルが学習データセットのラベルバイアスに対して, ポイントワイズで損なわれているかどうかを検証する手法を提案する。
この問題を個々のテストポイントに対して正確に解く方法を示し、近似的だがよりスケーラブルな方法を提供する。
また、いくつかのデータセット上の特定のバイアス仮定に対して、高いレベルの非腐食性など、バイアス-腐食性のギャップを掘り下げる。
論文 参考訳(メタデータ) (2022-06-07T20:47:07Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Efficient remedies for outlier detection with variational autoencoders [8.80692072928023]
深層生成モデルによって計算される類似度は、ラベルなしデータによる外れ値検出の候補メトリックである。
理論的に定位された補正は、VAE推定値による鍵バイアスを容易に改善することを示す。
また,VAEのアンサンブル上で計算される確率の分散により,ロバストな外乱検出が可能となることを示す。
論文 参考訳(メタデータ) (2021-08-19T16:00:58Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。