AMENet: Attentive Maps Encoder Network for Trajectory Prediction
- URL: http://arxiv.org/abs/2006.08264v2
- Date: Wed, 13 Jan 2021 15:57:30 GMT
- Title: AMENet: Attentive Maps Encoder Network for Trajectory Prediction
- Authors: Hao Cheng, Wentong Liao, Michael Ying Yang, Bodo Rosenhahn, Monika
Sester
- Abstract summary: Trajectory prediction is critical for applications of planning safe future movements.
We propose an end-to-end generative model named Attentive Maps Network (AMENet)
AMENet encodes the agent's motion and interaction information for accurate and realistic multi-path trajectory prediction.
- Score: 35.22312783822563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is critical for applications of planning safe future
movements and remains challenging even for the next few seconds in urban mixed
traffic. How an agent moves is affected by the various behaviors of its
neighboring agents in different environments. To predict movements, we propose
an end-to-end generative model named Attentive Maps Encoder Network (AMENet)
that encodes the agent's motion and interaction information for accurate and
realistic multi-path trajectory prediction. A conditional variational
auto-encoder module is trained to learn the latent space of possible future
paths based on attentive dynamic maps for interaction modeling and then is used
to predict multiple plausible future trajectories conditioned on the observed
past trajectories. The efficacy of AMENet is validated using two public
trajectory prediction benchmarks Trajnet and InD.
Related papers
- Multi-Agent Trajectory Prediction with Difficulty-Guided Feature Enhancement Network [1.5888246742280365]
Trajectory prediction is crucial for autonomous driving as it aims to forecast future movements of traffic participants.
Traditional methods usually perform holistic inference on trajectories of agents, neglecting the differences in difficulty among agents.
This paper proposes a novel DifficultyGuided Feature Enhancement (DGFNet), which leverages the prediction difficulty differences among agents.
arXiv Detail & Related papers (2024-07-26T07:04:30Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - LaPred: Lane-Aware Prediction of Multi-Modal Future Trajectories of
Dynamic Agents [10.869902339190949]
We propose a novel prediction model, referred to as the lane-aware prediction (LaPred) network.
LaPred uses the instance-level lane entities extracted from a semantic map to predict the multi-modal future trajectories.
The experiments conducted on the public nuScenes and Argoverse dataset demonstrate that the proposed LaPred method significantly outperforms the existing prediction models.
arXiv Detail & Related papers (2021-04-01T04:33:36Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
We develop a target-driven trajectory prediction framework for moving agents.
We benchmark it on trajectory prediction of vehicles and pedestrians.
We outperform state-of-the-art on Argoverse Forecasting, INTERACTION, Stanford Drone and an in-house Pedestrian-at-Intersection dataset.
arXiv Detail & Related papers (2020-08-19T06:52:46Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Physically constrained short-term vehicle trajectory forecasting with
naive semantic maps [6.85316573653194]
We propose a model that learns to extract relevant road features from semantic maps as well as general motion of agents.
We show that our model is not only capable of anticipating future motion whilst taking into consideration road boundaries, but can also effectively and precisely predict trajectories for a longer time horizon than initially trained for.
arXiv Detail & Related papers (2020-06-09T09:52:44Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.