Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network
- URL: http://arxiv.org/abs/2002.06241v1
- Date: Fri, 14 Feb 2020 20:11:13 GMT
- Title: Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network
- Authors: Jiachen Li, Hengbo Ma, Zhihao Zhang, Masayoshi Tomizuka
- Abstract summary: In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
- Score: 29.289670231364788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective understanding of the environment and accurate trajectory prediction
of surrounding dynamic obstacles are indispensable for intelligent mobile
systems (like autonomous vehicles and social robots) to achieve safe and
high-quality planning when they navigate in highly interactive and crowded
scenarios. Due to the existence of frequent interactions and uncertainty in the
scene evolution, it is desired for the prediction system to enable relational
reasoning on different entities and provide a distribution of future
trajectories for each agent. In this paper, we propose a generic generative
neural system (called Social-WaGDAT) for multi-agent trajectory prediction,
which makes a step forward to explicit interaction modeling by incorporating
relational inductive biases with a dynamic graph representation and leverages
both trajectory and scene context information. We also employ an efficient
kinematic constraint layer applied to vehicle trajectory prediction which not
only ensures physical feasibility but also enhances model performance. The
proposed system is evaluated on three public benchmark datasets for trajectory
prediction, where the agents cover pedestrians, cyclists and on-road vehicles.
The experimental results demonstrate that our model achieves better performance
than various baseline approaches in terms of prediction accuracy.
Related papers
- Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Interpretable Goal-Based model for Vehicle Trajectory Prediction in
Interactive Scenarios [4.1665957033942105]
Social interaction between a vehicle and its surroundings is critical for road safety in autonomous driving.
We propose a neural network-based model for the task of vehicle trajectory prediction in an interactive environment.
We implement and evaluate our model using the INTERACTION dataset and demonstrate the effectiveness of our proposed architecture.
arXiv Detail & Related papers (2023-08-08T15:00:12Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
Forecasting human trajectories in complex dynamic environments plays a critical role in autonomous vehicles and intelligent robots.
Most existing methods learn to predict future trajectories by behavior clues from history trajectories and interaction clues from environments.
We propose a counterfactual analysis method for human trajectory prediction to investigate the causality between the predicted trajectories and input clues.
arXiv Detail & Related papers (2021-07-29T17:41:34Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - SCOUT: Socially-COnsistent and UndersTandable Graph Attention Network
for Trajectory Prediction of Vehicles and VRUs [0.0]
SCOUT is a novel Attention-based Graph Neural Network that uses a flexible and generic representation of the scene as a graph.
We explore three different attention mechanisms and test our scheme with both bird-eye-view and on-vehicle urban data.
We evaluate our model's flexibility and transferability by testing it under completely new scenarios on RounD dataset.
arXiv Detail & Related papers (2021-02-12T06:29:28Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles.
We propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge.
arXiv Detail & Related papers (2020-04-07T00:34:36Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation.
We present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents.
We demonstrate its performance on several challenging real-world trajectory forecasting datasets.
arXiv Detail & Related papers (2020-01-09T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.