論文の概要: Similarity-based transfer learning of decision policies
- arxiv url: http://arxiv.org/abs/2006.08768v1
- Date: Fri, 12 Jun 2020 16:39:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 02:12:54.209566
- Title: Similarity-based transfer learning of decision policies
- Title(参考訳): 類似性に基づく意思決定政策の伝達学習
- Authors: Eli\v{s}ka Zugarov\'a and Tatiana V. Guy
- Abstract要約: 過去の経験から意思決定政策を学習する問題を考える。
本稿では,FPD(Fully Probabilistic Design)形式を用いて,過去のデータからポリシーを見つけるための新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A problem of learning decision policy from past experience is considered.
Using the Fully Probabilistic Design (FPD) formalism, we propose a new general
approach for finding a stochastic policy from the past data.
- Abstract(参考訳): 過去の経験から意思決定政策を学習する問題を考える。
完全確率的設計(fpd)形式を用いて,過去のデータから確率的方針を求めるための新しい一般的なアプローチを提案する。
関連論文リスト
- Predictive Performance Comparison of Decision Policies Under Confounding [32.21041697921289]
そこで本稿では, 意思決定ポリシーの予測性能を, 様々な現代的な識別手法で比較する手法を提案する。
我々の手法の鍵は、政策比較において安全に無視できる不確実性領域が存在するという洞察である。
論文 参考訳(メタデータ) (2024-04-01T01:27:07Z) - Control in Stochastic Environment with Delays: A Model-based
Reinforcement Learning Approach [3.130722489512822]
遅延フィードバックを伴う環境における制御問題に対する新しい強化学習手法を提案する。
具体的には,決定論的計画を用いた従来の手法に対して,計画を採用する。
この定式化は、決定論的遷移の問題に対する最適ポリシーを回復できることを示す。
論文 参考訳(メタデータ) (2024-02-01T03:53:56Z) - IOB: Integrating Optimization Transfer and Behavior Transfer for
Multi-Policy Reuse [50.90781542323258]
強化学習(RL)エージェントは、ソースポリシーからの知識を関連する目標タスクに転送することができる。
従来手法では,階層的なポリシやソースポリシの値関数の見積など,新たなコンポーネントが導入されていた。
本稿では,余分なコンポーネントを訓練せずにソースポリシーを選択する新しい転送RL法を提案する。
論文 参考訳(メタデータ) (2023-08-14T09:22:35Z) - Conformal Off-Policy Evaluation in Markov Decision Processes [53.786439742572995]
強化学習は、データから効率的な制御ポリシーを特定し評価することを目的としている。
この学習タスクのほとんどの方法は、Off-Policy Evaluation (OPE)と呼ばれ、正確さと確実性を保証するものではない。
本稿では,目標方針の真報を含む区間を所定の確信度で出力するコンフォーマル予測に基づく新しいOPE手法を提案する。
論文 参考訳(メタデータ) (2023-04-05T16:45:11Z) - Counterfactual Learning with General Data-generating Policies [3.441021278275805]
我々は、コンテキスト帯域設定における完全なサポートと不足したサポートロギングポリシーのクラスのためのOPE手法を開発した。
サンプルサイズが大きくなるにつれて,本手法の予測値が実測値の真の性能に収束することが証明された。
論文 参考訳(メタデータ) (2022-12-04T21:07:46Z) - Identification of Subgroups With Similar Benefits in Off-Policy Policy
Evaluation [60.71312668265873]
我々は,パーソナライズの必要性と自信ある予測とのバランスをとる方法を開発した。
本手法は不均一な治療効果の正確な予測に有効であることを示す。
論文 参考訳(メタデータ) (2021-11-28T23:19:12Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
報酬を最大化しつつ、行動を通じて特定の機密状態変数の開示を最小限に抑えながら、報酬を最大化する政策を訓練する課題を考察する。
本稿では, 感性状態と行動の相互情報に基づく正則化器を導入することで, この問題を解決する。
プライバシ制約のあるポリシーを最適化するためのモデルベース推定器を開発した。
論文 参考訳(メタデータ) (2020-12-30T03:22:35Z) - Robust Batch Policy Learning in Markov Decision Processes [0.0]
マルコフ決定プロセス(MDP)の枠組みにおけるオフラインデータ駆動シーケンシャル意思決定問題について検討する。
本稿では,政策誘導定常分布を中心とした分布について,平均報酬のセットを用いて各政策を評価することを提案する。
論文 参考訳(メタデータ) (2020-11-09T04:41:21Z) - Distributionally Robust Batch Contextual Bandits [20.667213458836734]
歴史的観測データを用いた政策学習は、広く応用されている重要な問題である。
既存の文献は、学習方針が展開される将来の環境が過去の環境と同じである、という決定的な前提に基づいている。
本稿では、この仮定を引き上げ、不完全な観測データを用いて、分布的に堅牢なポリシーを学習することを目的とする。
論文 参考訳(メタデータ) (2020-06-10T03:11:40Z) - Efficient Deep Reinforcement Learning via Adaptive Policy Transfer [50.51637231309424]
強化学習(RL)を促進するための政策伝達フレームワーク(PTF)の提案
我々のフレームワークは、いつ、いつ、どのソースポリシーがターゲットポリシーの再利用に最適なのか、いつそれを終了するかを学習する。
実験結果から,学習過程を著しく加速し,最先端の政策伝達手法を超越していることが判明した。
論文 参考訳(メタデータ) (2020-02-19T07:30:57Z) - Adaptive Estimator Selection for Off-Policy Evaluation [48.66170976187225]
オフポリシー評価設定における推定器選択のための汎用的データ駆動手法を開発した。
また,本手法の性能保証を確立し,オラクル推定器と競合することを示す。
論文 参考訳(メタデータ) (2020-02-18T16:57:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。