Cardiac Segmentation with Strong Anatomical Guarantees
- URL: http://arxiv.org/abs/2006.08825v1
- Date: Mon, 15 Jun 2020 23:38:31 GMT
- Title: Cardiac Segmentation with Strong Anatomical Guarantees
- Authors: Nathan Painchaud, Youssef Skandarani, Thierry Judge, Olivier Bernard,
Alain Lalande, Pierre-Marc Jodoin
- Abstract summary: Convolutional neural networks (CNN) have had unprecedented success in medical imaging.
CNNs are not immune to producing anatomically inaccurate segmentations, even when built upon a shape prior.
We present a framework for producing cardiac image segmentation maps that are guaranteed to respect pre-defined anatomical criteria.
- Score: 12.424949276500282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNN) have had unprecedented success in medical
imaging and, in particular, in medical image segmentation. However, despite the
fact that segmentation results are closer than ever to the inter-expert
variability, CNNs are not immune to producing anatomically inaccurate
segmentations, even when built upon a shape prior. In this paper, we present a
framework for producing cardiac image segmentation maps that are guaranteed to
respect pre-defined anatomical criteria, while remaining within the
inter-expert variability. The idea behind our method is to use a well-trained
CNN, have it process cardiac images, identify the anatomically implausible
results and warp these results toward the closest anatomically valid cardiac
shape. This warping procedure is carried out with a constrained variational
autoencoder (cVAE) trained to learn a representation of valid cardiac shapes
through a smooth, yet constrained, latent space. With this cVAE, we can project
any implausible shape into the cardiac latent space and steer it toward the
closest correct shape. We tested our framework on short-axis MRI as well as
apical two and four-chamber view ultrasound images, two modalities for which
cardiac shapes are drastically different. With our method, CNNs can now produce
results that are both within the inter-expert variability and always
anatomically plausible without having to rely on a shape prior.
Related papers
- EigenHearts: Cardiac Diseases Classification Using EigenFaces Approach [2.2851400085359685]
We investigate the application of a well recognized method known as the EigenFaces approach to classify cardiac diseases.
We perform a preprocessing step inspired from the eigenfaces approach on the echocardiography, yields sets of pod modes, which we will call eigenhearts.
The results show a substantial and noteworthy enhancement when employing SVD for pre-processing, with classification accuracy increasing by approximately 50%.
arXiv Detail & Related papers (2024-11-25T09:41:20Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - Shape constrained CNN for segmentation guided prediction of myocardial
shape and pose parameters in cardiac MRI [0.6445605125467573]
We use a CNN to predict shape parameters of an underlying statistical shape model of the myocardium.
The integrated shape model regularizes the predicted contours and guarantees realistic shapes.
We show the benefits of simultaneous semantic segmentation and the two newly defined loss functions for the prediction of shape parameters.
arXiv Detail & Related papers (2022-03-02T13:20:30Z) - Echocardiography Segmentation with Enforced Temporal Consistency [10.652677452009627]
We propose a framework to learn the 2D+time long-axis cardiac shape.
The identification and correction of cardiac inconsistencies relies on a constrained autoencoder trained to learn a physiologically interpretable embedding of cardiac shapes.
arXiv Detail & Related papers (2021-12-03T16:09:32Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
The cardiac organ consists of multiple substructures, i.e., ventricles, atriums, aortas, arteries, veins, and myocardium.
These cardiac substructures are proximate to each other and have indiscernible boundaries.
We introduce a novel model to exploit shape and boundary-aware features.
arXiv Detail & Related papers (2021-05-27T13:54:59Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
We propose a novel memory-efficient Convolutional Neural Network (CNN) architecture as a modification of both CondenseNet and DenseNet.
Our experiments show that the proposed architecture runs on the Automated Cardiac Diagnosis Challenge dataset.
arXiv Detail & Related papers (2020-04-05T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.