Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement
- URL: http://arxiv.org/abs/2507.16573v1
- Date: Tue, 22 Jul 2025 13:24:45 GMT
- Title: Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement
- Authors: Cedric Zöllner, Simon Reiß, Alexander Jaus, Amroalalaa Sholi, Ralf Sodian, Rainer Stiefelhagen,
- Abstract summary: We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
- Score: 61.573750959726475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When preoperative planning for surgeries is conducted on the basis of medical images, artificial intelligence methods can support medical doctors during assessment. In this work, we consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks, that may be supported via semantic segmentation models by making relevant anatomical structures measurable in computed tomography scans. We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans. Furthermore, we propose an adaptation to the loss function in training these segmentation models and through this achieve a +1.27% Dice increase in performance. Our fine-grained TAVR-relevant pseudo-labels and the computed tomography scans we build upon are available at https://doi.org/10.5281/zenodo.16274176.
Related papers
- Landmark-Free Preoperative-to-Intraoperative Registration in Laparoscopic Liver Resection [50.388465935739376]
Liver registration by overlaying preoperative 3D models onto intraoperative 2D frames can assist surgeons in perceiving the spatial anatomy of the liver clearly for a higher surgical success rate.<n>Existing registration methods rely heavily on anatomical landmark-based, which encounter two major limitations.<n>We propose a landmark-free preoperative-to-intraoperative registration framework utilizing effective self-supervised learning.
arXiv Detail & Related papers (2025-04-21T14:55:57Z) - SeqSeg: Learning Local Segments for Automatic Vascular Model Construction [2.4567747195551175]
SeqSeg is a novel deep learning based automatic tracing and segmentation algorithm for constructing image-based vascular models.<n>We demonstrate that SeqSeg is able to segment more complete vasculature and is able to generalize to vascular structures not annotated in the training data.
arXiv Detail & Related papers (2025-01-27T00:31:30Z) - Sequence-aware Pre-training for Echocardiography Probe Movement Guidance [71.79421124144145]
We introduce a novel probe movement guidance algorithm that has the potential to be applied in guiding robotic systems or novices with probe pose adjustment for high-quality standard plane image acquisition.<n>Our approach learns personalized three-dimensional cardiac structural features by predicting the masked-out image features and probe movement actions in a scanning sequence.
arXiv Detail & Related papers (2024-08-27T12:55:54Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - DeepGI: An Automated Approach for Gastrointestinal Tract Segmentation in
MRI Scans [5.997902886763401]
Gastrointestinal (GI) tract cancers pose a global health challenge, demanding precise radiotherapy planning for optimal treatment outcomes.
This paper introduces a cutting-edge approach to automate the segmentation of GI tract regions in magnetic resonance imaging (MRI) scans.
Leveraging advanced deep learning architectures, the proposed model integrates Inception-V4 for initial classification, UNet++ with a VGG19 encoder for 2.5D data, and Edge UNet for grayscale data segmentation.
arXiv Detail & Related papers (2024-01-27T09:05:41Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
We propose a novel visual-kinematics graph learning framework to accurately segment the instrument tip given various surgical procedures.
Specifically, a graph learning framework is proposed to encode relational features of instrument parts from both image and kinematics.
A cross-modal contrastive loss is designed to incorporate robust geometric prior from kinematics to image for tip segmentation.
arXiv Detail & Related papers (2023-09-02T14:52:58Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration [12.861503169117208]
Multimodal image registration has many applications in diagnostic medical imaging and image-guided interventions.
The ability to register peri-procedurally acquired diagnostic images into the intraprocedural environment can potentially improve the intra-procedural tumor targeting.
We propose an anatomy-preserving domain adaptation to segmentation network (APA2Seg-Net) for learning segmentation without target modality ground truth.
arXiv Detail & Related papers (2021-04-14T18:07:03Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Progressive Adversarial Semantic Segmentation [11.323677925193438]
Deep convolutional neural networks can perform exceedingly well given full supervision.
The success of such fully-supervised models for various image analysis tasks is limited to the availability of massive amounts of labeled data.
We propose a novel end-to-end medical image segmentation model, namely Progressive Adrial Semantic (PASS)
arXiv Detail & Related papers (2020-05-08T22:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.