論文の概要: Acquisition of Channel State Information for mmWave Massive MIMO:
Traditional and Machine Learning-based Approaches
- arxiv url: http://arxiv.org/abs/2006.08894v2
- Date: Sat, 12 Mar 2022 10:12:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 21:31:22.970909
- Title: Acquisition of Channel State Information for mmWave Massive MIMO:
Traditional and Machine Learning-based Approaches
- Title(参考訳): mmWave Massive MIMOのためのチャネル状態情報の取得:伝統的および機械学習に基づくアプローチ
- Authors: Chenhao Qi, Peihao Dong, Wenyan Ma, Hua Zhang, Zaichen Zhang and
Geoffrey Ye Li
- Abstract要約: チャネル状態情報(CSI)の取得精度はミリ波通信の性能に直接影響を与える。
本稿では,ミリ波マルチインプットマルチアウトプットシステムのビームトレーニングとチャネル推定を含む,CSIの買収の概要について述べる。
- 参考スコア(独自算出の注目度): 48.52099617055683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accuracy of channel state information (CSI) acquisition directly affects
the performance of millimeter wave (mmWave) communications. In this article, we
provide an overview on CSI acquisition, including beam training and channel
estimation for mmWave massive multiple-input multiple-output systems. The beam
training can avoid the estimation of a high-dimension channel matrix while the
channel estimation can flexibly exploit advanced signal processing techniques.
In addition to introducing the traditional and machine learning-based
approaches in this article, we also compare different approaches in terms of
spectral efficiency, computational complexity, and overhead.
- Abstract(参考訳): チャネル状態情報(CSI)の取得精度はミリ波通信の性能に直接影響を与える。
本稿では,ミリ波マルチインプット多重出力システムのビームトレーニングとチャネル推定を含む,CSIの買収の概要について述べる。
ビームトレーニングは高次元チャネル行列の推定を回避でき、チャネル推定は高度な信号処理技術を柔軟に活用することができる。
この記事では、従来の機械学習ベースのアプローチの導入に加えて、スペクトル効率、計算複雑性、オーバーヘッドの観点から異なるアプローチを比較します。
関連論文リスト
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - An Efficient Machine Learning-based Channel Prediction Technique for
OFDM Sub-Bands [0.0]
我々はOFDMサブバンドにおけるチャネル予測のための効率的な機械学習(ML)に基づく手法を提案する。
提案手法の新規性は、選択的なフェーディングにおける将来のチャネル挙動を推定するために使用されるチャネルフェーディングサンプルのトレーニングにある。
論文 参考訳(メタデータ) (2023-05-31T09:41:27Z) - Pay Less But Get More: A Dual-Attention-based Channel Estimation Network
for Massive MIMO Systems with Low-Density Pilots [41.213515826100696]
低密度パイロットによる正確なチャネル推定を実現するために,デュアルアテンションに基づくチャネル推定ネットワーク(DACEN)を提案する。
実験結果から,提案手法は既存の手法よりも優れたチャネル推定性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-03-02T05:34:25Z) - Deep Generative Models for Downlink Channel Estimation in FDD Massive
MIMO Systems [13.267048706241157]
この課題に対処するために, 深部生成モデル(DGM)に基づく手法を提案する。
アップリンクチャネルとダウンリンクチャネルの部分的相互性を実行し、まず、周波数非依存のチャネルパラメータを推定する。
次に、各伝搬路の位相である周波数固有チャネルパラメータをダウンリンクトレーニングにより推定する。
論文 参考訳(メタデータ) (2022-03-09T18:32:10Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - Deep Learning-based Beam Tracking for Millimeter-wave Communications
under Mobility [27.62606029014951]
ミリ波(mm波)通信の深層学習に基づくビーム追跡手法を提案する。
深層ニューラルネットワークを用いて,慣性センサによって取得された時間変動チャネルと信号の時間構造とパターンを分析した。
提案手法は, 様々な移動シナリオにおいて, 従来のビーム追従法に比べて有意な性能向上を達成した。
論文 参考訳(メタデータ) (2021-02-19T08:05:11Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。