論文の概要: DefenseVGAE: Defending against Adversarial Attacks on Graph Data via a
Variational Graph Autoencoder
- arxiv url: http://arxiv.org/abs/2006.08900v1
- Date: Tue, 16 Jun 2020 03:30:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 19:09:51.766347
- Title: DefenseVGAE: Defending against Adversarial Attacks on Graph Data via a
Variational Graph Autoencoder
- Title(参考訳): DefenseVGAE: 変分グラフオートエンコーダによるグラフデータに対する敵攻撃に対する防御
- Authors: Ao Zhang and Jinwen Ma
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフデータ上のタスクに対して顕著なパフォーマンスを達成する。
近年の研究では、敵対的な構造的摂動に非常に弱いことが示されており、その結果は信頼できない。
本稿では,変分グラフオートエンコーダ(VGAE)を利用した新しいフレームワークであるDefenseVGAEを提案する。
- 参考スコア(独自算出の注目度): 22.754141951413786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) achieve remarkable performance for tasks on
graph data. However, recent works show they are extremely vulnerable to
adversarial structural perturbations, making their outcomes unreliable. In this
paper, we propose DefenseVGAE, a novel framework leveraging variational graph
autoencoders(VGAEs) to defend GNNs against such attacks. DefenseVGAE is trained
to reconstruct graph structure. The reconstructed adjacency matrix can reduce
the effects of adversarial perturbations and boost the performance of GCNs when
facing adversarial attacks. Our experiments on a number of datasets show the
effectiveness of the proposed method under various threat models. Under some
settings it outperforms existing defense strategies. Our code has been made
publicly available at https://github.com/zhangao520/defense-vgae.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフデータ上のタスクに対して顕著なパフォーマンスを達成する。
しかし、近年の研究では、敵対的な構造的摂動に対して極めて脆弱であり、結果が信頼できないことが示されている。
本稿では,変分グラフオートエンコーダ(VGAE)を利用した新しいフレームワークであるDefenseVGAEを提案する。
DefenseVGAEはグラフ構造を再構築するよう訓練されている。
再構成された隣接行列は、対向的摂動の影響を低減し、対向的攻撃に直面した際のGCNの性能を高めることができる。
本研究では,様々な脅威モデルにおいて提案手法の有効性を示す実験を行った。
いくつかの設定では、既存の防衛戦略を上回っている。
私たちのコードはhttps://github.com/zhangao520/defense-vgaeで公開されています。
関連論文リスト
- Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
グラフニューラルネットワーク(GNN)は敵の攻撃に弱いことが示されている。
本稿では,DGA(Dariable Graph Attack)と呼ばれる新しい攻撃手法を提案し,効果的な攻撃を効率的に生成する。
最先端と比較して、DGAは6倍のトレーニング時間と11倍のGPUメモリフットプリントでほぼ同等の攻撃性能を達成する。
論文 参考訳(メタデータ) (2023-08-29T20:14:42Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Bandits for Structure Perturbation-based Black-box Attacks to Graph
Neural Networks with Theoretical Guarantees [60.61846004535707]
グラフニューラルネットワーク(GNN)は多くのグラフベースのタスクで最先端のパフォーマンスを達成した。
攻撃者はグラフ構造をわずかに摂動させることでGNNモデルを誤解させることができる。
本稿では,構造摂動を伴うGNNに対するブラックボックス攻撃と理論的保証について考察する。
論文 参考訳(メタデータ) (2022-05-07T04:17:25Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
我々は,グラフ構造の摂動によるグラフ分類のためのGNNに対する敵対的攻撃について,系統的研究を行った。
我々は、高い攻撃成功率を維持しながら、グラフ内で摂動するエッジの数を最小化する最適化問題として、我々の攻撃を定式化する。
実世界の3つのデータセットに対する実験結果から,クエリや摂動を少なくして,グラフ分類のための代表的GNNを効果的に攻撃できることが示された。
論文 参考訳(メタデータ) (2021-08-21T14:01:34Z) - Black-box Gradient Attack on Graph Neural Networks: Deeper Insights in
Graph-based Attack and Defense [3.3504365823045035]
グラフニューラルネットワーク(gnns)は、さまざまなグラフ表現学習タスクにおける最先端のパフォーマンスにより、大きな注目を集めている。
近年の研究では、GNNは敵の攻撃に弱いことが判明している。
攻撃者はグラフ構造やノード機能を意図的に乱すことで、GNNを騙すことができる。
既存の攻撃アルゴリズムの多くは、実際の世界では実用的ではないモデルパラメータまたはトレーニングデータへのアクセスを必要とする。
論文 参考訳(メタデータ) (2021-04-30T15:30:47Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
近年の研究では、グラフニューラルネットワーク(GNN)は堅牢性の欠如により摂動に弱いことが示されている。
現在、GNN攻撃に関するほとんどの研究は、主に攻撃を誘導し、優れたパフォーマンスを達成するために勾配情報を使用している。
主な理由は、攻撃にグラフ全体を使わなければならないため、データスケールが大きくなるにつれて、時間と空間の複雑さが増大するからです。
本稿では,グラフデータに対する敵攻撃の影響を測定するために,DAC(Degree Assortativity Change)という実用的な指標を提案する。
論文 参考訳(メタデータ) (2020-09-08T02:17:55Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
敵攻撃は入力に対する小さな摂動によって容易に騙される。
グラフニューラルネットワーク(GNN)がこの脆弱性を継承することを実証している。
本調査では,既存の攻撃と防御を分類し,対応する最先端の手法を概観する。
論文 参考訳(メタデータ) (2020-03-02T04:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。