RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real
- URL: http://arxiv.org/abs/2006.09001v1
- Date: Tue, 16 Jun 2020 08:58:07 GMT
- Title: RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real
- Authors: Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz,
Mohi Khansari
- Abstract summary: We introduce the RL-scene consistency loss for image translation, which ensures that the translation operation is invariant with respect to the Q-values associated with the image.
We obtain RL-CycleGAN, a new approach for simulation-to-real-world transfer for reinforcement learning.
- Score: 74.45688231140689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network based reinforcement learning (RL) can learn appropriate
visual representations for complex tasks like vision-based robotic grasping
without the need for manually engineering or prior learning a perception
system. However, data for RL is collected via running an agent in the desired
environment, and for applications like robotics, running a robot in the real
world may be extremely costly and time consuming. Simulated training offers an
appealing alternative, but ensuring that policies trained in simulation can
transfer effectively into the real world requires additional machinery.
Simulations may not match reality, and typically bridging the
simulation-to-reality gap requires domain knowledge and task-specific
engineering. We can automate this process by employing generative models to
translate simulated images into realistic ones. However, this sort of
translation is typically task-agnostic, in that the translated images may not
preserve all features that are relevant to the task. In this paper, we
introduce the RL-scene consistency loss for image translation, which ensures
that the translation operation is invariant with respect to the Q-values
associated with the image. This allows us to learn a task-aware translation.
Incorporating this loss into unsupervised domain translation, we obtain
RL-CycleGAN, a new approach for simulation-to-real-world transfer for
reinforcement learning. In evaluations of RL-CycleGAN on two vision-based
robotics grasping tasks, we show that RL-CycleGAN offers a substantial
improvement over a number of prior methods for sim-to-real transfer, attaining
excellent real-world performance with only a modest number of real-world
observations.
Related papers
- DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - TWIST: Teacher-Student World Model Distillation for Efficient
Sim-to-Real Transfer [23.12048336150798]
This paper proposes TWIST (Teacher-Student World Model Distillation for Sim-to-Real Transfer) to achieve efficient sim-to-real transfer of vision-based model-based RL.
Specifically, TWIST leverages state observations as readily accessible, privileged information commonly garnered from a simulator to significantly accelerate sim-to-real transfer.
arXiv Detail & Related papers (2023-11-07T00:18:07Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
We propose a sensing-aware model-based reinforcement learning system called SAM-RL.
With the sensing-aware learning pipeline, SAM-RL allows a robot to select an informative viewpoint to monitor the task process.
We apply our framework to real world experiments for accomplishing three manipulation tasks: robotic assembly, tool manipulation, and deformable object manipulation.
arXiv Detail & Related papers (2022-10-27T05:30:43Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
We present Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving.
This is done by learning to translate randomized simulation images into simulated segmentation and depth maps.
This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world.
arXiv Detail & Related papers (2022-10-25T17:50:36Z) - Sim2real for Reinforcement Learning Driven Next Generation Networks [4.29590751118341]
Reinforcement Learning (RL) models are regarded as the key to solving RAN-related multi-objective optimization problems.
One of the main reasons is the modelling gap between the simulation and the real environment, which could make the RL agent trained by simulation ill-equipped for the real environment.
This article brings to the fore the sim2real challenge within the context of Open RAN (O-RAN)
Several use cases are presented to exemplify and demonstrate failure modes of the simulations trained RL model in real environments.
arXiv Detail & Related papers (2022-06-08T12:40:24Z) - Practical Imitation Learning in the Real World via Task Consistency Loss [18.827979446629296]
This paper introduces a self-supervised loss that encourages sim and real alignment both at the feature and action-prediction levels.
We achieve 80% success across ten seen and unseen scenes using only 16.2 hours of teleoperated demonstrations in sim and real.
arXiv Detail & Related papers (2022-02-03T21:43:06Z) - MELD: Meta-Reinforcement Learning from Images via Latent State Models [109.1664295663325]
We develop an algorithm for meta-RL from images that performs inference in a latent state model to quickly acquire new skills.
MELD is the first meta-RL algorithm trained in a real-world robotic control setting from images.
arXiv Detail & Related papers (2020-10-26T23:50:30Z) - Robust Reinforcement Learning-based Autonomous Driving Agent for
Simulation and Real World [0.0]
We present a DRL-based algorithm that is capable of performing autonomous robot control using Deep Q-Networks (DQN)
In our approach, the agent is trained in a simulated environment and it is able to navigate both in a simulated and real-world environment.
The trained agent is able to run on limited hardware resources and its performance is comparable to state-of-the-art approaches.
arXiv Detail & Related papers (2020-09-23T15:23:54Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.