Deep Learning based Segmentation of Fish in Noisy Forward Looking MBES
Images
- URL: http://arxiv.org/abs/2006.09034v1
- Date: Tue, 16 Jun 2020 09:57:38 GMT
- Title: Deep Learning based Segmentation of Fish in Noisy Forward Looking MBES
Images
- Authors: Jesper Haahr Christensen, Lars Valdemar Mogensen, Ole Ravn
- Abstract summary: We build on recent advances in Deep Learning (DL) and Convolutional Neural Networks (CNNs) for semantic segmentation.
We demonstrate an end-to-end approach for a fish/non-fish probability prediction for all range-azimuth positions projected by an imaging sonar.
We show that our model proves the desired performance and has learned to harness the importance of semantic context.
- Score: 1.5469452301122177
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we investigate a Deep Learning (DL) approach to fish
segmentation in a small dataset of noisy low-resolution images generated by a
forward-looking multibeam echosounder (MBES). We build on recent advances in DL
and Convolutional Neural Networks (CNNs) for semantic segmentation and
demonstrate an end-to-end approach for a fish/non-fish probability prediction
for all range-azimuth positions projected by an imaging sonar. We use
self-collected datasets from the Danish Sound and the Faroe Islands to train
and test our model and present techniques to obtain satisfying performance and
generalization even with a low-volume dataset. We show that our model proves
the desired performance and has learned to harness the importance of semantic
context and take this into account to separate noise and non-targets from real
targets. Furthermore, we present techniques to deploy models on low-cost
embedded platforms to obtain higher performance fit for edge environments -
where compute and power are restricted by size/cost - for testing and
prototyping.
Related papers
- Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Metrically Scaled Monocular Depth Estimation through Sparse Priors for
Underwater Robots [0.0]
We formulate a deep learning model that fuses sparse depth measurements from triangulated features to improve the depth predictions.
The network is trained in a supervised fashion on the forward-looking underwater dataset, FLSea.
The method achieves real-time performance, running at 160 FPS on a laptop GPU and 7 FPS on a single CPU core.
arXiv Detail & Related papers (2023-10-25T16:32:31Z) - Learning Signal-Agnostic Manifolds of Neural Fields [50.066449953522685]
We leverage neural fields to capture the underlying structure in image, shape, audio and cross-modal audiovisual domains.
We show that by walking across the underlying manifold of GEM, we may generate new samples in our signal domains.
arXiv Detail & Related papers (2021-11-11T18:57:40Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Exploring the Impacts from Datasets to Monocular Depth Estimation (MDE)
Models with MineNavi [5.689127984415125]
Current computer vision tasks based on deep learning require a huge amount of data with annotations for model training or testing.
In practice, manual labeling for dense estimation tasks is very difficult or even impossible, and the scenes of the dataset are often restricted to a small range.
We propose a synthetic dataset generation method to obtain the expandable dataset without burdensome manual workforce.
arXiv Detail & Related papers (2020-08-19T14:03:17Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
We present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation.
We used ResNet based feature extractor, dilated convolutional layers in downsampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them.
A new attention module is proposed to encode more contextual information and enhance the receptive field of the network.
arXiv Detail & Related papers (2020-06-30T20:19:09Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.