Neural Edge Histogram Descriptors for Underwater Acoustic Target Recognition
- URL: http://arxiv.org/abs/2503.13763v1
- Date: Mon, 17 Mar 2025 22:57:05 GMT
- Title: Neural Edge Histogram Descriptors for Underwater Acoustic Target Recognition
- Authors: Atharva Agashe, Davelle Carreiro, Alexandra Van Dine, Joshua Peeples,
- Abstract summary: This work adapts the neural edge histogram descriptors (NEHD) method originally developed for image classification, to classify passive sonar signals.<n>We conduct a comprehensive evaluation of statistical and structural texture features, demonstrating that their combination achieves competitive performance with large pre-trained models.<n>The proposed NEHD-based approach offers a lightweight and efficient solution for underwater target recognition, significantly reducing computational costs while maintaining accuracy.
- Score: 42.23422932643755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous maritime applications rely on the ability to recognize acoustic targets using passive sonar. While there is a growing reliance on pre-trained models for classification tasks, these models often require extensive computational resources and may not perform optimally when transferred to new domains due to dataset variations. To address these challenges, this work adapts the neural edge histogram descriptors (NEHD) method originally developed for image classification, to classify passive sonar signals. We conduct a comprehensive evaluation of statistical and structural texture features, demonstrating that their combination achieves competitive performance with large pre-trained models. The proposed NEHD-based approach offers a lightweight and efficient solution for underwater target recognition, significantly reducing computational costs while maintaining accuracy.
Related papers
- Quantized and Interpretable Learning Scheme for Deep Neural Networks in Classification Task [0.0]
We introduce an approach that combines saliency-guided training with quantization techniques to create an interpretable and resource-efficient model.<n>Our results demonstrate that the combined use of saliency-guided training and PACT-based quantization not only maintains classification performance but also produces models that are significantly more efficient and interpretable.
arXiv Detail & Related papers (2024-12-05T06:34:06Z) - Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
We introduce a regularization technique to ensure that the magnitudes of the extracted features are evenly distributed.
Despite its apparent simplicity, our approach has demonstrated significant performance improvements across various fine-grained visual recognition datasets.
arXiv Detail & Related papers (2024-09-03T07:32:46Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
The presence of noisy labels in a training dataset can significantly impact the performance of machine learning models.
We introduce a novel algorithm called TURN, which robustly and efficiently transfers the prior knowledge of pre-trained models.
arXiv Detail & Related papers (2023-10-24T20:28:59Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
A novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification.
The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition.
arXiv Detail & Related papers (2023-07-25T19:47:26Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Deep Learning based Segmentation of Fish in Noisy Forward Looking MBES
Images [1.5469452301122177]
We build on recent advances in Deep Learning (DL) and Convolutional Neural Networks (CNNs) for semantic segmentation.
We demonstrate an end-to-end approach for a fish/non-fish probability prediction for all range-azimuth positions projected by an imaging sonar.
We show that our model proves the desired performance and has learned to harness the importance of semantic context.
arXiv Detail & Related papers (2020-06-16T09:57:38Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.