論文の概要: Probabilistic Decoupling of Labels in Classification
- arxiv url: http://arxiv.org/abs/2006.09046v1
- Date: Tue, 16 Jun 2020 10:07:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 19:17:48.129440
- Title: Probabilistic Decoupling of Labels in Classification
- Title(参考訳): ラベルの分類における確率的デカップリング
- Authors: Jeppe N{\o}rregaard and Lars Kai Hansen
- Abstract要約: 非標準分類タスクに対する原則的,確率的,統一的なアプローチを開発する。
ラベル分布を予測するために、与えられたラベルの分類器を訓練する。
次に、ラベルクラス遷移のモデルを変動的に最適化することで、基礎となるクラス分布を推定する。
- 参考スコア(独自算出の注目度): 4.865747672937677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we develop a principled, probabilistic, unified approach to
non-standard classification tasks, such as semi-supervised,
positive-unlabelled, multi-positive-unlabelled and noisy-label learning. We
train a classifier on the given labels to predict the label-distribution. We
then infer the underlying class-distributions by variationally optimizing a
model of label-class transitions.
- Abstract(参考訳): 本稿では,半教師付き,正アンラベル化,多陽性アンラベル化,雑音ラベル学習などの非標準分類タスクに対する原則的,確率的,統一的なアプローチを開発する。
ラベル分布を予測するために,ラベルの分類器を訓練する。
次にラベルクラス遷移のモデルを変分最適化することで、基礎となるクラス分配を推測する。
関連論文リスト
- Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
補完ラベル学習は、弱教師付き学習問題である。
均一分布仮定に依存しない一貫したアプローチを提案する。
相補的なラベル学習は、負のラベル付きバイナリ分類問題の集合として表現できる。
論文 参考訳(メタデータ) (2023-11-27T02:59:17Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - Label distribution learning via label correlation grid [9.340734188957727]
ラベル関係の不確かさをモデル化するための textbfLabel textbfCorrelation textbfGrid (LCG) を提案する。
我々のネットワークはLCGを学習し、各インスタンスのラベル分布を正確に推定する。
論文 参考訳(メタデータ) (2022-10-15T03:58:15Z) - Label Distribution Learning via Implicit Distribution Representation [12.402054374952485]
本稿では,ラベル分布学習フレームワークにおける暗黙分布を導入し,ラベル値の不確かさを特徴付ける。
具体的には、深い暗黙的表現学習を用いて、ガウス的事前制約を持つラベル分布行列を構築する。
ラベル分布行列の各行成分は、自己アテンションアルゴリズムを用いて標準ラベル分布形式に変換される。
論文 参考訳(メタデータ) (2022-09-28T04:13:53Z) - Learning with Proper Partial Labels [87.65718705642819]
部分ラベル学習は、不正確なラベルを持つ弱い教師付き学習の一種である。
この適切な部分ラベル学習フレームワークには,従来の部分ラベル学習設定が数多く含まれていることを示す。
次に、分類リスクの統一的非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-12-23T01:37:03Z) - Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced
Semi-Supervised Learning [80.05441565830726]
本稿では,疑似ラベルの重み付けがモデル性能に悪影響を及ぼすような,不均衡な半教師付き学習に対処する。
本稿では,この観測の動機となるバイアスに対処する,一般的な擬似ラベルフレームワークを提案する。
不均衡SSLのための新しい擬似ラベルフレームワークを、DASO(Distributed-Aware Semantics-Oriented Pseudo-label)と呼ぶ。
論文 参考訳(メタデータ) (2021-06-10T11:58:25Z) - Multi-Class Classification from Noisy-Similarity-Labeled Data [98.13491369929798]
雑音に類似したラベル付きデータのみから学習する方法を提案する。
ノイズ遷移行列を用いて、クリーンデータとノイズデータの間にクラス後確率をブリッジする。
雑音のないクラスラベルをインスタンスに割り当てる新しい学習システムを構築した。
論文 参考訳(メタデータ) (2020-02-16T05:10:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。