The Bures Metric for Generative Adversarial Networks
- URL: http://arxiv.org/abs/2006.09096v3
- Date: Tue, 27 Apr 2021 14:45:45 GMT
- Title: The Bures Metric for Generative Adversarial Networks
- Authors: Hannes De Meulemeester, Joachim Schreurs, Micha\"el Fanuel, Bart De
Moor and Johan A.K. Suykens
- Abstract summary: Generative Adversarial Networks (GANs) are performant generative methods yielding high-quality samples.
We propose to match the real batch diversity to the fake batch diversity.
We observe that diversity matching reduces mode collapse substantially and has a positive effect on the sample quality.
- Score: 10.69910379275607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) are performant generative methods
yielding high-quality samples. However, under certain circumstances, the
training of GANs can lead to mode collapse or mode dropping, i.e. the
generative models not being able to sample from the entire probability
distribution. To address this problem, we use the last layer of the
discriminator as a feature map to study the distribution of the real and the
fake data. During training, we propose to match the real batch diversity to the
fake batch diversity by using the Bures distance between covariance matrices in
feature space. The computation of the Bures distance can be conveniently done
in either feature space or kernel space in terms of the covariance and kernel
matrix respectively. We observe that diversity matching reduces mode collapse
substantially and has a positive effect on the sample quality. On the practical
side, a very simple training procedure, that does not require additional
hyperparameter tuning, is proposed and assessed on several datasets.
Related papers
- Improving Distribution Alignment with Diversity-based Sampling [0.0]
Domain shifts are ubiquitous in machine learning, and can substantially degrade a model's performance when deployed to real-world data.
This paper proposes to improve these estimates by inducing diversity in each sampled minibatch.
It simultaneously balances the data and reduces the variance of the gradients, thereby enhancing the model's generalisation ability.
arXiv Detail & Related papers (2024-10-05T17:26:03Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Training Implicit Generative Models via an Invariant Statistical Loss [3.139474253994318]
Implicit generative models have the capability to learn arbitrary complex data distributions.
On the downside, training requires telling apart real data from artificially-generated ones using adversarial discriminators.
We develop a discriminator-free method for training one-dimensional (1D) generative implicit models.
arXiv Detail & Related papers (2024-02-26T09:32:28Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Diverse Human Motion Prediction via Gumbel-Softmax Sampling from an
Auxiliary Space [34.83587750498361]
Diverse human motion prediction aims at predicting multiple possible future pose sequences from a sequence of observed poses.
Previous approaches usually employ deep generative networks to model the conditional distribution of data, and then randomly sample outcomes from the distribution.
We propose a novel sampling strategy for sampling very diverse results from an imbalanced multimodal distribution.
arXiv Detail & Related papers (2022-07-15T09:03:57Z) - Selectively increasing the diversity of GAN-generated samples [8.980453507536017]
We propose a novel method to selectively increase the diversity of GAN-generated samples.
We show the superiority of our method in a synthetic benchmark as well as a real-life scenario simulating data from the Zero Degree Calorimeter of ALICE experiment in CERN.
arXiv Detail & Related papers (2022-07-04T16:27:06Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.