Training Implicit Generative Models via an Invariant Statistical Loss
- URL: http://arxiv.org/abs/2402.16435v1
- Date: Mon, 26 Feb 2024 09:32:28 GMT
- Title: Training Implicit Generative Models via an Invariant Statistical Loss
- Authors: Jos\'e Manuel de Frutos and Pablo M. Olmos and Manuel A. V\'azquez and
Joaqu\'in M\'iguez
- Abstract summary: Implicit generative models have the capability to learn arbitrary complex data distributions.
On the downside, training requires telling apart real data from artificially-generated ones using adversarial discriminators.
We develop a discriminator-free method for training one-dimensional (1D) generative implicit models.
- Score: 3.139474253994318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit generative models have the capability to learn arbitrary complex
data distributions. On the downside, training requires telling apart real data
from artificially-generated ones using adversarial discriminators, leading to
unstable training and mode-dropping issues. As reported by Zahee et al. (2017),
even in the one-dimensional (1D) case, training a generative adversarial
network (GAN) is challenging and often suboptimal. In this work, we develop a
discriminator-free method for training one-dimensional (1D) generative implicit
models and subsequently expand this method to accommodate multivariate cases.
Our loss function is a discrepancy measure between a suitably chosen
transformation of the model samples and a uniform distribution; hence, it is
invariant with respect to the true distribution of the data. We first formulate
our method for 1D random variables, providing an effective solution for
approximate reparameterization of arbitrary complex distributions. Then, we
consider the temporal setting (both univariate and multivariate), in which we
model the conditional distribution of each sample given the history of the
process. We demonstrate through numerical simulations that this new method
yields promising results, successfully learning true distributions in a variety
of scenarios and mitigating some of the well-known problems that
state-of-the-art implicit methods present.
Related papers
- Robust training of implicit generative models for multivariate and heavy-tailed distributions with an invariant statistical loss [0.4249842620609682]
We build on the textitinvariant statistical loss (ISL) method introduced in citede2024training.
We extend it to handle heavy-tailed and multivariate data distributions.
We assess its performance in generative generative modeling and explore its potential as a pretraining technique for generative adversarial networks (GANs)
arXiv Detail & Related papers (2024-10-29T10:27:50Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - PAC Generalization via Invariant Representations [41.02828564338047]
We consider the notion of $epsilon$-approximate invariance in a finite sample setting.
Inspired by PAC learning, we obtain finite-sample out-of-distribution generalization guarantees.
Our results show bounds that do not scale in ambient dimension when intervention sites are restricted to lie in a constant size subset of in-degree bounded nodes.
arXiv Detail & Related papers (2022-05-30T15:50:14Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
Trarimiy prediction is confronted with the dilemma to capture the multi-modal nature of future dynamics.
We present a distribution discrimination (DisDis) method to predict personalized motion patterns.
Our method can be integrated with existing multi-modal predictive models as a plug-and-play module.
arXiv Detail & Related papers (2021-07-29T17:42:12Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
We formulate a method that learns a finite set of statistics from each return distribution via neural networks.
Our method can be interpreted as implicitly matching all orders of moments between a return distribution and its Bellman target.
Experiments on the suite of Atari games show that our method outperforms the standard distributional RL baselines.
arXiv Detail & Related papers (2020-07-24T05:18:17Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.