Focus of Attention Improves Information Transfer in Visual Features
- URL: http://arxiv.org/abs/2006.09229v1
- Date: Tue, 16 Jun 2020 15:07:25 GMT
- Title: Focus of Attention Improves Information Transfer in Visual Features
- Authors: Matteo Tiezzi, Stefano Melacci, Alessandro Betti, Marco Maggini, Marco
Gori
- Abstract summary: This paper focuses on unsupervised learning for transferring visual information in a truly online setting.
The computation of the entropy terms is carried out by a temporal process which yields online estimation of the entropy terms.
In order to better structure the input probability distribution, we use a human-like focus of attention model.
- Score: 80.22965663534556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised learning from continuous visual streams is a challenging problem
that cannot be naturally and efficiently managed in the classic batch-mode
setting of computation. The information stream must be carefully processed
accordingly to an appropriate spatio-temporal distribution of the visual data,
while most approaches of learning commonly assume uniform probability density.
In this paper we focus on unsupervised learning for transferring visual
information in a truly online setting by using a computational model that is
inspired to the principle of least action in physics. The maximization of the
mutual information is carried out by a temporal process which yields online
estimation of the entropy terms. The model, which is based on second-order
differential equations, maximizes the information transfer from the input to a
discrete space of symbols related to the visual features of the input, whose
computation is supported by hidden neurons. In order to better structure the
input probability distribution, we use a human-like focus of attention model
that, coherently with the information maximization model, is also based on
second-order differential equations. We provide experimental results to support
the theory by showing that the spatio-temporal filtering induced by the focus
of attention allows the system to globally transfer more information from the
input stream over the focused areas and, in some contexts, over the whole
frames with respect to the unfiltered case that yields uniform probability
distributions.
Related papers
- Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - PiRD: Physics-informed Residual Diffusion for Flow Field Reconstruction [5.06136344261226]
CNN-based methods for data fidelity enhancement rely on low-fidelity data patterns and distributions during the training phase.
Our proposed model - Physics-informed Residual Diffusion - demonstrates the capability to elevate the quality of data from both standard low-fidelity inputs.
Experimental results have shown that our approach can effectively reconstruct high-quality outcomes for two-dimensional turbulent flows without requiring retraining.
arXiv Detail & Related papers (2024-04-12T11:45:51Z) - Gramian Angular Fields for leveraging pretrained computer vision models
with anomalous diffusion trajectories [0.9012198585960443]
We present a new data-driven method for working with diffusive trajectories.
This method utilizes Gramian Angular Fields (GAF) to encode one-dimensional trajectories as images.
We leverage two well-established pre-trained computer-vision models, ResNet and MobileNet, to characterize the underlying diffusive regime.
arXiv Detail & Related papers (2023-09-02T17:22:45Z) - Learning invariant representations of time-homogeneous stochastic dynamical systems [27.127773672738535]
We study the problem of learning a representation of the state that faithfully captures its dynamics.
This is instrumental to learning the transfer operator or the generator of the system.
We show that the search for a good representation can be cast as an optimization problem over neural networks.
arXiv Detail & Related papers (2023-07-19T11:32:24Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
We propose a unified deep framework to jointly learn both spatial attention maps and channel attention in a principled manner.
Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework.
We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters.
arXiv Detail & Related papers (2021-03-05T07:37:24Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Wave Propagation of Visual Stimuli in Focus of Attention [77.4747032928547]
Fast reactions to changes in the surrounding visual environment require efficient attention mechanisms to reallocate computational resources to most relevant locations in the visual field.
We present a biologically-plausible model of focus of attention that exhibits effectiveness and efficiency exhibited by foveated animals.
arXiv Detail & Related papers (2020-06-19T09:33:21Z) - Scaling-up Distributed Processing of Data Streams for Machine Learning [10.581140430698103]
This paper reviews recently developed methods that focus on large-scale distributed optimization in the compute- and bandwidth-limited regime.
It focuses on methods that solve: (i) distributed convex problems, and (ii) distributed principal component analysis, which is a non problem with geometric structure that permits global convergence.
arXiv Detail & Related papers (2020-05-18T16:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.